por Gustavo182 » Qui Abr 18, 2013 18:54
Preciso de muita ajuda no seguinte exercício:
Calcule a área da região delimitada de Bernoulli, de equação r^2 = 4cos(2 theta)
obrigado
-
Gustavo182
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Abr 18, 2013 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: exatas
- Andamento: cursando
por young_jedi » Sex Abr 19, 2013 21:29
temos que

portanto por integral de coordenada polares

tente calcular a integral
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área da região (limite)
por Ana Maria da Silva » Qui Fev 27, 2014 19:18
- 0 Respostas
- 887 Exibições
- Última mensagem por Ana Maria da Silva

Qui Fev 27, 2014 19:18
Cálculo: Limites, Derivadas e Integrais
-
- Caulcular Área região triangular
por ThiagoMPT » Qui Nov 10, 2011 17:07
- 2 Respostas
- 2033 Exibições
- Última mensagem por ThiagoMPT

Qui Nov 10, 2011 17:49
Geometria Plana
-
- Integral, área da região limitada.
por Maicon Simoes » Qui Abr 19, 2012 10:58
- 1 Respostas
- 1830 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:00
Cálculo: Limites, Derivadas e Integrais
-
- [Integral dupla ƒƒ] área de região
por ricardosanto » Sex Nov 02, 2012 12:05
- 1 Respostas
- 1718 Exibições
- Última mensagem por young_jedi

Sex Nov 02, 2012 17:12
Cálculo: Limites, Derivadas e Integrais
-
- Área de Região plana limitada por funções
por iarapassos » Qui Jan 03, 2013 18:52
- 1 Respostas
- 2572 Exibições
- Última mensagem por Russman

Qui Jan 03, 2013 20:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.