• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana]

[Geometria Plana]

Mensagempor Micael » Qua Abr 17, 2013 22:29

Observe a figura :
Nela o círculo tem o centro O e raio 6 e OP=16. A reta PT é tangente ao circulo em T eo segmento --TQ é perpendicular á reta OP assim sendo, o comprimento do segmento QP é? da uma ajuda nesse exercicio...

R:13,75
Anexos
geometria.png
geometria.png (6.1 KiB) Exibido 6630 vezes
Editado pela última vez por Micael em Qui Abr 18, 2013 10:21, em um total de 2 vezes.
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana]

Mensagempor nakagumahissao » Qui Abr 18, 2013 08:10

Não tem algo errado nesta questão? OP = 16 e é perguntado quanto vale OP?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Geometria Plana]

Mensagempor Micael » Qui Abr 18, 2013 10:22

Pronto arrumei! .... alguem pode ajudar?
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana]

Mensagempor nakagumahissao » Qui Abr 18, 2013 11:47

Veja bem, temos dois triângulos semelhantes:

TQO e TQP. A distância entre OQ será de 6 -x e QP de 16 - 6 + x = 10 + x. Logo:

Imagem

Note que OQ = 6-x, QP = 16 - (6-x) = 10 + x, PTO é um triângulo retângulo pois PT é tangente ao círculo, TQO e TQP são triângulos retângulos. Logo, de PTO tem-se:

u^{2} + 6^{2} = dist(OP)^{2} = 16^{2} = 256

u^{2} + 36 = 256 \Rightarrow u^{2} = 220


Agora, do triângulo OQT tem-se:

h^{2} + (6-x)^{2} = 6^{2} = 36 \Rightarrow h^{2} + 36 - 12x + x^{2} = 36 \Rightarrow

\Rightarrow h^{2} = 36 - 36 + 12x - x^{2} \Rightarrow h^{2} = 12x - x^{2}


Do último triângulo, TQP, tem-se:

h^{2} + (10 + x)^2 = u^{2} = 220 \Rightarrow h^{2} = 220 - 100 - 20x - x^{2}

Igualando h^{2}:

220 - 100 - 20x - x^{2} = 12x - x^{2} \Rightarrow 12x + 20x = 120 \Rightarrow 32x = 120 \Rightarrow x = \frac{15}{4}

Sabendo-se que x = 15/4 e que OP = 16, então a distância QP = 10 + x será de:

QP = 10 + \frac{15}{4} = \frac{40 + 15}{4 }=13,75

Que é o valor procurado!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Geometria Plana]

Mensagempor Micael » Seg Abr 22, 2013 19:15

Muito obrigado pela ajuda... valeu mesmo
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}