• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatório de fatoriais

Somatório de fatoriais

Mensagempor Prof Prevaricador » Dom Abr 14, 2013 22:28

O meu ponto fraco são mesmo os somatórios...
e somatórios de fatoriais então...

Não consigo começar a resolver este exercício:

Determine o valor da soma:

\sum_{{i}={1}}^{n} \frac{1}{i!(i-1)!((n-i)!)^2}


Alguém pode dar um empurrãozinho?

Cumps
Prof Prevaricador
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 29, 2012 12:44
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Somatório de fatoriais

Mensagempor marciosouza » Qua Abr 17, 2013 23:21

Olá!

Você já tentou por indução?

primeiro n=1

depois n=k

e depois n=k+1 (neste você aplica uma substituição, e depois o resultado sai)

dê uma olhada por este método (PROVA POR INDUÇÃO MATEMÁTICA)...

qualquer COISA AVISE!
marciosouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 20, 2011 16:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59