• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CONJUNTOS

CONJUNTOS

Mensagempor Biinha » Qua Abr 17, 2013 20:31

Boa noite pessoal, Alguém poderia me ajudar ?


Sejam A={1,2,3,4}, B={3,4,5,6} e C={5,6,7,8}, subconjuntos do conjunto universo U={1,2,3,...,10}.
Listar os elementos dos seguintes conjuntos:
(a) (A U B U C) elevado a c
(b) O conjunto de todos os subconjuntos de ( A U B U C ) ELEVADO A C
(c) O complemento da união de todos os elementos do conjunto de todos os subconjuntos de ( A U B U C ) elevado

a c
Biinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Fev 15, 2013 12:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.