por Daniel Gurgel » Qui Out 22, 2009 12:15
Olá pessoal, não estou conseguindo fazer essa questão, se alguém conseguir mande-me a resolução por favor.
A área de um paralelepípedo retângulo é 720

. A diagonal de uma de suas faces mede 20m e a soma das suas dimensões é 34m .Quais as dimensões deste paralelepípedo ?
-
Daniel Gurgel
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Ago 22, 2009 18:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: concursos
- Andamento: cursando
por Molina » Qui Out 22, 2009 13:51
Boa tarde, Daniel.
Temos três equações:



To tentando usar essas informações para encontrar alguma das dimensões.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Daniel Gurgel » Sáb Out 24, 2009 12:23
Eu tentei fazer assim:
2ab+2ac+2bc=720
a+b+c=34
aa+bb=400
Só que ñ consegui!
-
Daniel Gurgel
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Ago 22, 2009 18:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: concursos
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- paralelepipedo
por Gir » Ter Set 22, 2009 10:41
- 2 Respostas
- 5994 Exibições
- Última mensagem por Gir

Ter Set 22, 2009 15:32
Geometria Espacial
-
- Paralelepípedo
por vitoria » Qui Set 24, 2009 10:36
- 2 Respostas
- 1641 Exibições
- Última mensagem por vitoria

Qui Set 24, 2009 17:17
Geometria Espacial
-
- Volume do Paralelepípedo
por Vini » Ter Out 20, 2009 12:09
- 1 Respostas
- 3438 Exibições
- Última mensagem por Vini

Qui Out 22, 2009 12:07
Geometria Espacial
-
- paralelepipedo retangular
por pedro martins » Sáb Jun 02, 2012 15:37
- 0 Respostas
- 1478 Exibições
- Última mensagem por pedro martins

Sáb Jun 02, 2012 15:37
Geometria Espacial
-
- Volume do Paralelepípedo
por Santosk » Seg Abr 15, 2013 15:17
- 1 Respostas
- 1895 Exibições
- Última mensagem por young_jedi

Seg Abr 15, 2013 21:28
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.