por JKS » Qui Abr 11, 2013 01:38
preciso de ajuda,desde já agradeço!
Numa PG infinita e crescente temos a1= -2 e an=
![-\frac{\sqrt[]{2}}{2} -\frac{\sqrt[]{2}}{2}](/latexrender/pictures/4c94b35379405d3afd5cbf8b2d32344c.png)
e S= -4-
![2 \sqrt[]{2} 2 \sqrt[]{2}](/latexrender/pictures/770fa487002b4fe15ea2eee9d93cae6a.png)
. Calcule q e n .
Gabarito:
![\frac{\sqrt[]{2}}{2} \frac{\sqrt[]{2}}{2}](/latexrender/pictures/3e7a67a6d458831b40b1454b389ed266.png)
e 4
-
JKS
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Ago 01, 2012 13:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Ter Abr 16, 2013 12:49

Tente calcular

.
Att,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [PG infinita e crescente]
por JKS » Qui Abr 11, 2013 01:38
- 1 Respostas
- 2003 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 12:52
Progressões
-
- Soma de uma PG infinita
por silvia fillet » Qua Fev 15, 2012 19:53
- 12 Respostas
- 8723 Exibições
- Última mensagem por Rosana Vieira

Qua Fev 22, 2012 17:44
Progressões
-
- [PG alternante e infinita]
por JKS » Qui Abr 11, 2013 01:24
- 3 Respostas
- 2309 Exibições
- Última mensagem por DanielFerreira

Sex Abr 26, 2013 21:30
Progressões
-
- [PG infinita com trigonometria] ITA-SP
por JKS » Qui Abr 11, 2013 01:54
- 1 Respostas
- 2302 Exibições
- Última mensagem por e8group

Qui Abr 11, 2013 13:27
Progressões
-
- PA crescente
por jose henrique » Dom Set 19, 2010 12:23
- 2 Respostas
- 3458 Exibições
- Última mensagem por MarceloFantini

Seg Set 20, 2010 03:14
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.