• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(algebra)Produtos notáveis

(algebra)Produtos notáveis

Mensagempor Man Utd » Seg Abr 15, 2013 20:42

a+b+c=7 e \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=\frac{7}{10}, o valor de \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} é igual a:
gabarito :39/10
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor e8group » Seg Abr 15, 2013 21:28

Por a+b+c = 7

Temos :

a = 7 - (b+c)

b = 7 - (a+c)

c = 7 - (a+b)


Daí ,

\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{b+a} =  \frac{7 - (b+c)}{b+c} + \frac{7 - (a+c)}{a+c} + \frac{7 - (a+b)}{b+a}


\frac{7}{b+c} - \frac{b+c}{b+c}  + \frac{7}{a+c} - \frac{a+c}{a+c}  + \frac{7}{a+c} - \frac{a+b}{a+b}=

\frac{7}{b+c} + \frac{7}{a+c} + \frac{7}{a+b} - 1 - 1 - 1 .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 09:15

\\\\
7.(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b})-3 \\\\
7.(\frac{7}{10})-3 \\\\
\frac{49}{10}-3 \\\\
\frac{19}{10}

aonde errei? :oops:
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 11:53

Man Utd,
Não errou! O gabarito está errado.
Fiz de outra forma e conclui o mesmo, veja:

\\ (a + b + c)\left ( \frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{a + c} \right ) = 7 \cdot \frac{7}{10} \\\\\\ \frac{a}{a + b} + \frac{a}{b + c} + \frac{a}{a + c} + \frac{b}{a + b} + \frac{b}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} + \frac{c}{b + c} + \frac{c}{a + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{a}{a + b} + \frac{a}{a + c} + \frac{b}{a + b} + \frac{b}{b + c} + \frac{c}{b + c} + \frac{c}{a + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{a}{a + b} + \frac{b}{a + b} + \frac{a}{a + c} + \frac{c}{a + c} + \frac{b}{b + c} + \frac{c}{b + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{1}{a + b}(a + b) + \frac{1}{a + c}(a + c) + \frac{1}{b + c}(a + b) = \frac{49}{10}


\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + 1 + 1 + 1 = \frac{49}{10} \\\\\\ \frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{49}{10} - 3 \\\\\\ \frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{49}{10} - \frac{30}{10} \\\\\\ \boxed{\boxed{\boxed{\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{19}{10}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 12:07

muito obrigado pelas respostas: danjr5 e santhiago,mas enfim há alguma maneira de resolver esse problema utilizando algum produto notável?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 12:20

Caro Man Utd,
a primeira linha de resolução que apresentei é um produto notável (Produto de Stevin) seguido de uma distributiva...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 12:33

tá bom,mais uma vez obrigado danjr5
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 16:58

Não há de quê e sinta-se à vontade para perguntar!

Até!

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)