• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(algebra)Produtos notáveis

(algebra)Produtos notáveis

Mensagempor Man Utd » Seg Abr 15, 2013 20:42

a+b+c=7 e \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=\frac{7}{10}, o valor de \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} é igual a:
gabarito :39/10
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor e8group » Seg Abr 15, 2013 21:28

Por a+b+c = 7

Temos :

a = 7 - (b+c)

b = 7 - (a+c)

c = 7 - (a+b)


Daí ,

\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{b+a} =  \frac{7 - (b+c)}{b+c} + \frac{7 - (a+c)}{a+c} + \frac{7 - (a+b)}{b+a}


\frac{7}{b+c} - \frac{b+c}{b+c}  + \frac{7}{a+c} - \frac{a+c}{a+c}  + \frac{7}{a+c} - \frac{a+b}{a+b}=

\frac{7}{b+c} + \frac{7}{a+c} + \frac{7}{a+b} - 1 - 1 - 1 .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 09:15

\\\\
7.(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b})-3 \\\\
7.(\frac{7}{10})-3 \\\\
\frac{49}{10}-3 \\\\
\frac{19}{10}

aonde errei? :oops:
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 11:53

Man Utd,
Não errou! O gabarito está errado.
Fiz de outra forma e conclui o mesmo, veja:

\\ (a + b + c)\left ( \frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{a + c} \right ) = 7 \cdot \frac{7}{10} \\\\\\ \frac{a}{a + b} + \frac{a}{b + c} + \frac{a}{a + c} + \frac{b}{a + b} + \frac{b}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} + \frac{c}{b + c} + \frac{c}{a + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{a}{a + b} + \frac{a}{a + c} + \frac{b}{a + b} + \frac{b}{b + c} + \frac{c}{b + c} + \frac{c}{a + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{a}{a + b} + \frac{b}{a + b} + \frac{a}{a + c} + \frac{c}{a + c} + \frac{b}{b + c} + \frac{c}{b + c} = \frac{49}{10} \\\\\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + \frac{1}{a + b}(a + b) + \frac{1}{a + c}(a + c) + \frac{1}{b + c}(a + b) = \frac{49}{10}


\\ \left (\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b}  \right ) + 1 + 1 + 1 = \frac{49}{10} \\\\\\ \frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{49}{10} - 3 \\\\\\ \frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{49}{10} - \frac{30}{10} \\\\\\ \boxed{\boxed{\boxed{\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} = \frac{19}{10}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 12:07

muito obrigado pelas respostas: danjr5 e santhiago,mas enfim há alguma maneira de resolver esse problema utilizando algum produto notável?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 12:20

Caro Man Utd,
a primeira linha de resolução que apresentei é um produto notável (Produto de Stevin) seguido de uma distributiva...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (algebra)Produtos notáveis

Mensagempor Man Utd » Ter Abr 16, 2013 12:33

tá bom,mais uma vez obrigado danjr5
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: (algebra)Produtos notáveis

Mensagempor DanielFerreira » Ter Abr 16, 2013 16:58

Não há de quê e sinta-se à vontade para perguntar!

Até!

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59