• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Encontrar Domínio] Equação trigonométrica

[Encontrar Domínio] Equação trigonométrica

Mensagempor JessicaAraujo » Dom Abr 14, 2013 19:05

Podem me ajudar?

Encontre o domínio de f(x)= sec(x/2) e resolva a inequação sec(x/2) > 2 para x ? [0,4?]
JessicaAraujo
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 11, 2013 15:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Encontrar Domínio] Equação trigonométrica

Mensagempor e8group » Dom Abr 14, 2013 19:32

Como f(x)= sec(x/2) = \frac{1}{cos(x/2)} e x \in[0,4\pi] ,o domínio da função f será D_f = \{x \in[0,4\pi] : cos(x/2) \neq 0 \} .

Pergunta : Quais valores no intervalo [0,4\pi] \implies cos(x/2) = 0 ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}