por rochadapesada » Dom Abr 14, 2013 17:40
Não conseguir fazer essa questão, eu deduzir que com a rotação iria ocorrer a formação de 3 cones, mas fazendo os cálculos não dar nenhum resultado =s
O volume do sólido gerado pela rotação do triângulo isósceles de 6 cm de altura e 2 cm de base em torno da base é, em

:
a)12

b)14

c)24

d)26

e)36

-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por marciosouza » Dom Abr 14, 2013 17:55
Olá!
Deixa eu ver se consigo te ajudar!
Imagine se vc girar isso, ficaria com uma espécie de disco certo... de modo que o volume deste disco é a metade do volume gerado pelo cilindro que é obtido ao projetar as bases com seis cm de altura, o que te daria um retângulo de base 2 ( a mesma base do triângulo e altura 6 (conforme altura do triângulo... rotacionando este retângulo sobre a sua base (2) terás um cilindro... a metade dele te dará o volume que queres...
Resposta 24pi
-
marciosouza
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Set 20, 2011 16:25
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por rochadapesada » Ter Abr 16, 2013 17:39
Você falou e eu não entendi nadinha nadinha =s... não tem como mostrar por figura ou explicar de novo? Não entendi essa parte do disco nem a parte do cilindro
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Espacial] Rotação de um trapézio
por rochadapesada » Dom Abr 14, 2013 17:49
- 2 Respostas
- 6583 Exibições
- Última mensagem por rochadapesada

Ter Abr 16, 2013 18:07
Geometria Espacial
-
- [Geometria espacial] Prisma de base um triângulo equilátero
por rochadapesada » Seg Abr 08, 2013 18:13
- 1 Respostas
- 2795 Exibições
- Última mensagem por aleph

Ter Out 06, 2015 20:31
Geometria Espacial
-
- [Geometria Plana - Triângulo] Triângulo Isós. e Bissetriz
por raimundoocjr » Qua Fev 22, 2012 09:41
- 3 Respostas
- 6424 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 25, 2012 01:37
Geometria Plana
-
- geometria espacial
por Gir » Seg Jul 27, 2009 11:46
- 3 Respostas
- 11614 Exibições
- Última mensagem por Molina

Ter Jul 28, 2009 15:21
Problemas do Cotidiano
-
- Geometria espacial
por nathy vieira » Qua Out 07, 2009 22:37
- 2 Respostas
- 2732 Exibições
- Última mensagem por nathy vieira

Qua Out 07, 2009 23:03
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.