por Cosma » Qui Abr 11, 2013 20:54
Olá galera! Acabei de me inscrever aqui e necessito de ajuda para resolver algumas funções de primeiro grau. Receio que não tenha visto esse tema com a devida profundidade pois não faço ideia nem por onde começar. O exercício diz o seguinte:
É dado que f(x) > 0, para todo x real, f(1) = 3 e f(u + v) = f(u) . f(v), para quaisquer números reais u e v. Calcule:
a.) f(2)
b.) f(0)
c.) f(1/2)
Eu tentei montar algum tipo de sistema para achar valores de u e v, mas percebi que não é por ai que devo começar, pois fazendo
u + v = 1
u . v = 3
onde, v = 1 - u
e substituindo u . (1 - u) = 3
simplificando e resolvendo, eu chego na equação de segundo grau - u² + u - 3, onde o delta é negativo, não possuindo raízes reais.
Não faço ideia do que fazer, por favor, me ajudem =(
-
Cosma
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 11, 2013 20:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qui Abr 11, 2013 21:53
Podemos Tomar

;assim

.
Como

,concluímos que

. Qual a resposta ?
E com respeito a

? Podemos tomar

e

;assim ,

,logo

e qual seria a resposta ?
E

,como ficaria ??
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Qui Abr 11, 2013 23:41
A função que satisfaz essa propriedade

é a função exponencial! (:
Veja que se

, onde

é uma constante real, temos então

Basta determinar o valor de

usando a informação

.

Portanto,

e então podemos determinar a função

.
Agora basta substituir os valores de

e voce terá os valores das funções.
Claro que o método do amigo ali de cima é mais geral, mas eu achei que valia a pena ressaltar essa observação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Cosma » Sáb Abr 13, 2013 12:37
Aah, entendi agora!
Tratando-se de uma função, podemos jogar valores para u e v e disso descobrimos a constante que é a função exponencial igual nosso amigo disse.
Se

e

a gente conclui que
logo

e

E o

seria, transformando em raiz ficaria
![\sqrt[2]{3} \sqrt[2]{3}](/latexrender/pictures/77529b271d4ed2ab8ca1f0755594aa28.png)
, correto?
-
Cosma
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 11, 2013 20:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Sáb Abr 13, 2013 14:50
Sim. As potências fracionárias são raízes.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não sei nem por onde começar
por Daniel Bertuol » Ter Set 06, 2011 14:03
- 1 Respostas
- 1456 Exibições
- Última mensagem por Neperiano

Ter Set 06, 2011 14:47
Matemática Financeira
-
- Não sei nem por onde começar essa.....
por cidaiesbik » Seg Mai 04, 2009 12:51
- 2 Respostas
- 2539 Exibições
- Última mensagem por cidaiesbik

Seg Mai 04, 2009 18:22
Desafios Difíceis
-
- Dúvida não sei por onde começar...
por csmoreira » Seg Mar 04, 2013 20:46
- 0 Respostas
- 2208 Exibições
- Última mensagem por csmoreira

Seg Mar 04, 2013 20:46
Álgebra Linear
-
- função do segundo grau, urgente não sei como começar
por eri » Sex Mar 15, 2013 23:31
- 1 Respostas
- 3603 Exibições
- Última mensagem por XILVANA

Qua Abr 10, 2013 13:20
Funções
-
- Não sei por onde começar, mais quero entender (Vetores)
por Linda Arantes » Sex Set 10, 2010 14:52
- 1 Respostas
- 3022 Exibições
- Última mensagem por MarceloFantini

Sex Set 10, 2010 17:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.