• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão geometrica: PG

Progressão geometrica: PG

Mensagempor Erico gremio » Qui Abr 11, 2013 18:51

Calcule o valor da soma das PG.
a) 1 + 2x + 3x² + 4x³ + ... com x < 1

b) 1 + 11 + 111 + 1111 + ...

Determine o valor da soma: S = 0,3+0,33+0,333+...
Quanto vale 3S?
Erico gremio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 11, 2013 18:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: Progressão geometrica: PG

Mensagempor e8group » Qui Abr 11, 2013 21:17

O que você tentou ?

Na letra (a) podemos proceder da seguinte forma ,

S_{\infty} =1 + 2x+ 3x^2 + ... =  1 + x([1 + 1] + [x +2x] + [3x^2+ x^2]+ \hdots)

= 1 + x(1 + x + x^2 +\hdots + [1 + 2x + 3x^2 + \hdots ])

=  1 +x(1 + x^2 + x^3 + \hdots  + S_{\infty})

= 1 + xS_{\infty}^* + xS_{\infty}   \implies  S_{\infty} = \frac{1+ xS_{\infty}^{*}}{1-x}   , x \neq 1

Onde :

S_{\infty}^* =  1 +x+ x^2 + x^3 + x^4 + \hdots  = 1 + x(1+x +x^2 + x^3 + \hdots)

=  1 + x S_{\infty}^*   \implies  S_{\infty}^*=  \frac{1}{1-x}


Assim ,

S_{\infty} =  \frac{1+ xS_{\infty}^{*}}{1-x}  =  \frac{1+ x \cdot \dfrac{1}{1-x}}{1-x} =  \frac{1}{(1-x)^2}    ,  x\neq  1

Na letra (b) , observe que :

11 = 10 + 1

111 = 100 + 10 + 1

1111 = 1000 +  100 + 10 + 1

(...)

e assim sucessivamente ,como seria esta soma ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}