por JKS » Qui Abr 11, 2013 01:54
preciso de ajuda,desde já agradeço!
Seja

um valor fixado no intervalo
![\left[0,\frac{\pi}{2} \right] \left[0,\frac{\pi}{2} \right]](/latexrender/pictures/1383a7ee0ed99beee339c92e7a5fae08.png)
. Sabe-se que a1=cotg

é o primeiro termo de uma PG infinita de razão q =

.A soma de todos os termos dessa progressão é :
gabarito : sec

.cossec

-
JKS
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Ago 01, 2012 13:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Abr 11, 2013 13:27
A fórmula da Soma dos infinitos termos de uma progressão geométrica é :

.
Caso tenha curiosidade de como chegar nesta fórmula ,veja :

.
Ou ainda de forma compacta ,

.
Agora note que

.
Daí ,somando-se

em ambos membros , temos

.
Como

; desde que

,ou seja ,

. Podemos ,multiplicar ambos membros por

obtendo ,

.
Aplicação para o exercício :
Condições para aplicarmos a fórmula

:
Como foi dado que

e

,temos então que
obrigatoriamente 
e

.
Assim ,

é um valor fixado no intervalo

e não
![\left[0,\pi/2\right] \left[0,\pi/2\right]](/latexrender/pictures/4bb510c32589d41db3084fd07db1dcfd.png)
.Com estas condições podemos aplicar a fórmula

,segue

que devido a

,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma de uma PG infinita
por silvia fillet » Qua Fev 15, 2012 19:53
- 12 Respostas
- 8723 Exibições
- Última mensagem por Rosana Vieira

Qua Fev 22, 2012 17:44
Progressões
-
- [PG alternante e infinita]
por JKS » Qui Abr 11, 2013 01:24
- 3 Respostas
- 2306 Exibições
- Última mensagem por DanielFerreira

Sex Abr 26, 2013 21:30
Progressões
-
- [PG infinita e crescente]
por JKS » Qui Abr 11, 2013 01:38
- 1 Respostas
- 2002 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 12:52
Progressões
-
- [PG infinita e crescente]
por JKS » Qui Abr 11, 2013 01:38
- 1 Respostas
- 1802 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 12:49
Progressões
-
- Progressão geométrica (Soma da PG infinita)
por kellykcl » Qui Fev 27, 2014 23:20
- 2 Respostas
- 3944 Exibições
- Última mensagem por alexandre_de_melo

Sex Fev 28, 2014 17:07
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.