• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vetor ortonormal positiva

vetor ortonormal positiva

Mensagempor Ana Maria da Silva » Seg Abr 08, 2013 15:46

Sabendo que \{\vec i,\,\vec j,\,\vec k\} forma uma base ortonormal positiva do R^3 e que \vec a=2\vec i+2\vec j+2\vec k e \vec b=3\vec i+2\vec j +3\vec k , podemos afirmar que ||\vec a\times \vec b||^2 vale:
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: vetor ortonormal positiva

Mensagempor e8group » Seg Abr 08, 2013 16:15

Note que ||\vec a\times \vec b||^2 = ||\vec a||^2||\vec b||^2sin^2\theta = ||\vec a||^2||\vec b||^2(1-cos^2 \theta) = ||\vec a||^2||\vec b||^2 - (\vec a \cdot \vec b)^2 ,onde \theta = ang(\vec a ,\vec b) .

Como \vec a=2\vec i+2\vec j+2\vec k = (2,2,2) e \vec b=3\vec i+2\vec j +3\vec k = (3,2,3) ,então ||\vec a|| = \sqrt{2^2 + 2^2 + 2^2} = 2\sqrt{3}  , ||\vec b|| = \sqrt{3^2 + 3^2 + 2^2} = \sqrt{22} e \vec a \cdot \vec b = (2,2,2) \cdot (3,2,3) = 2 \cdot 3 + 2\cdot 2 + 2\cdot 3 = 16 e portanto ,

||\vec a\times \vec b||^2 = ||\vec a||^2||\vec b||^2 - (\vec a \cdot \vec b)^2  \hdots complete você .

Tente concluir
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.