por KleinIll » Sex Abr 05, 2013 12:56
Calcule

, onde D é o disco

, identificando primeiro a integral como o volume de um sólido.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por Russman » Sex Abr 05, 2013 21:00
O 1° passo é verificar se há simetria no problema. Se sim, qual? Você sabe dizer?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por KleinIll » Sáb Abr 06, 2013 00:47
Não. Esta é uma questão retirada do livro James Stewart Volume 2.
Edição: Não é necessário responder este tópico mais pois eu já consegui esclarecer minha dúvida. Depois de converter para coordenadas polares eu consegui integrar.
Russman, desculpa se eu estiver ofendendo, mas eu acho mais do que justo deixar claro que quando alguém pede ajuda aqui é porque não sabe fazer a conta/questão, então, ao invés responder com outra pergunta, responda a resolução. Novamente, desculpa se eu estou ofendendo.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por Russman » Sáb Abr 06, 2013 16:21
KleinIll escreveu:Russman, desculpa se eu estiver ofendendo, mas eu acho mais do que justo deixar claro que quando alguém pede ajuda aqui é porque não sabe fazer a conta/questão, então, ao invés responder com outra pergunta, responda a resolução. Novamente, desculpa se eu estou ofendendo.
Não ofendeu. Esse seu pensamento, que é lastimável, é muito comum. Se eu tivesse lhe resolvido a questão, isto é, tivesse lhe entregue a resolução, eu NÃO estaria lhe ajudando. Ajudar a resolver questões matemáticas é encaminhar um raciocínio que o guiará até a solução completa por si mesmo. Quem deve ser capaz de solucionar o problema é VOCÊ, e não eu, pois eu já sei. Afinal, se você sabe resolver somente este exercício(ou uma meia dúzia semelhante) você não sabe coisa alguma sobre integrais duplas.
KleinIll escreveu:Depois de converter para coordenadas polares eu consegui integrar.
A isto que eu me referia. O problema tem simetria polar. Assim, convertendo para o sistema polar de coordenadas o problema pode ser resolvido facilmente. Era esse o 1° passo.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por KleinIll » Sáb Abr 06, 2013 18:18
Concordo com você, sou eu quem precisa aprender e entendo que você queira primeiramente saber qual é minha dúvida especificadamente. Tudo bem, eu posso estar "errado" por pedir a resolução, mas eu tenho a consciência e a capacidade de distinguir o que é a minha dúvida e o que é um "tipo" de exercício. Inclusive quando eu posto alguma dúvida aqui, no site, eu adiciono o máximo de comentários possíveis. Nesta questão eu não tive este cuidado pois preferi ver a resolução completa. De qualquer forma, obrigado pela atenção e compreensão.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral Tripla (Resolvida)] Volume de Sólido
por raimundoocjr » Seg Dez 16, 2013 23:33
- 1 Respostas
- 3675 Exibições
- Última mensagem por young_jedi

Ter Dez 17, 2013 19:48
Cálculo: Limites, Derivadas e Integrais
-
- [Volume] Integral dupla
por Claudio Parana » Qua Fev 05, 2014 21:33
- 1 Respostas
- 2282 Exibições
- Última mensagem por young_jedi

Seg Fev 17, 2014 21:27
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de volume atravé de integral dupla
por maiquel » Qua Out 13, 2010 12:34
- 1 Respostas
- 7221 Exibições
- Última mensagem por armando

Sex Jan 06, 2017 04:14
Cálculo: Limites, Derivadas e Integrais
-
- [Coordenada Polar] Volume por Integral Dupla
por raimundoocjr » Qui Dez 12, 2013 19:42
- 0 Respostas
- 2318 Exibições
- Última mensagem por raimundoocjr

Qui Dez 12, 2013 19:42
Cálculo: Limites, Derivadas e Integrais
-
- Volume do Solido
por leha » Qui Dez 10, 2009 10:22
- 3 Respostas
- 3146 Exibições
- Última mensagem por leha

Seg Dez 14, 2009 13:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.