• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria no ciclo]

[Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 16:04

Boa tarde! Não estou conseguindo resolver esse exercício.Me ajudem!!!



Se tgx=4,determine o valor de:
tg(?/4 + x) + tg( ?/4 - x)
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor e8group » Qui Abr 04, 2013 16:37

Boa tarde ,vamos deduzir simultaneamente uma fórmula para tangente da soma e diferença de dois ângulos .

Considere tan(a + c) .Temos tan(a+c) = \frac{sin(a+c)}{cos(a+c)} ,como

sin(a+c) = sin(a)cos(c) + cos(a)sin(c) e cos(a+c) = cos(a)cos(c) - sin(a)sin(c) ,então :

tan(a+c) = \frac{sin(a)cos(c) + cos(a)sin(c) }{cos(a)cos(c) - sin(a)sin(c)} e ainda a expressão é equivalente a


tan(a+c) = \frac{\dfrac{sin(a)cos(c) + cos(a)sin(c)}{cos(a)cos(c)} }{\dfrac{cos(a)cos(c) - sin(a)sin(c)}{cos(a)cos(c)}} =  \frac{tan(a) + tan(c)}{1-tan(a)tan(c)} .

Assim , se c = -b . A tangente da diferença a-b será : tan(a-b) = \frac{tan(a) - tan(b)}{1 +tan(a)tan(b)} e da soma a+b : tan(a +b) = \frac{tan(a) + tan(b)}{1 -tan(a)tan(b)} .

Aplicação :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{tan(45^{\circ}) + tan(x)}{1 -tan(45^{\circ})tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) = \frac{tan(45^{\circ}) - tan(x)}{1 +tan(45^{\circ})tan(x)} . Sendo tan(\pi/4) = tan(45^{\circ} ) = 1 ,então :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{1 + tan(x)}{1 -tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) =  \frac{1 - tan(x)}{1 +tan(x)} .

Logo ,

tan(\pi/4 + x) + tan(\pi/4 - x)  =  \frac{1 + tan(x)}{1 -tan(x)} +  \frac{1 - tan(x)}{1 +tan(x)} . Basta substituir tan(x) = 4 ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 18:44

Muito obrigada.Entendi!!!
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.