• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra de Três composta

Regra de Três composta

Mensagempor Thais Aquino Lima » Seg Abr 01, 2013 18:40

Olá Professores,tudo bem?

Sábado estava estudando um pouco sobre regra de três composta e descobri um método para fazer os cálculos;gostaria de saber se posso resolver desta forma.O sistema é o seguinte:

Eu comparo os três elementos como elemento que possui o X;se eu localizar uma Grandeza Inversamente Proporcional inverto o elemento que não possui o X,e se for Grandeza Diretamente Proporcional,nada se altera.Vale lembrar que neste forma que criei,nunca inverto o elemento em que está o X;refiz diversos exercícios da minha Apostila com este método e o resultado foi o mesmo (Na apostila foi utilizado o método convencional).Gostaria porém,de confirmar com os professores,porque minha próxima aula de matemática já será a prova.

Muito Obrigado!
Até mais!
Thais
Thais Aquino Lima
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Fev 11, 2013 11:44
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: 8º ano
Andamento: cursando

Re: Regra de Três composta

Mensagempor Cleyson007 » Seg Abr 01, 2013 19:03

Olá, boa noite!

Aqui está detalhado o procedimento, por favor confira: http://www.matematicamuitofacil.com/reg ... posta.html

Esses problemas envolvendo a regra composta são mais complexos, daí prefiro utilizar o método convencional.

Não testei essa forma que você criou porque tenho aula daqui a pouco.. Vamos ver o povo diz :y:

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Regra de Três composta

Mensagempor Thais Aquino Lima » Seg Abr 01, 2013 19:30

Cleyson007 escreveu:Olá, boa noite!

Aqui está detalhado o procedimento, por favor confira: http://www.matematicamuitofacil.com/reg ... posta.html

Esses problemas envolvendo a regra composta são mais complexos, daí prefiro utilizar o método convencional.

Não testei essa forma que você criou porque tenho aula daqui a pouco.. Vamos ver o povo diz :y:

Abraço,

Cleyson007


Obrigado pela resposta!Eu também sei o método convencional;como temos 2 aulas para fazer a prova e ela é separada em prática e dissertativa,posso fazer com os dois métodos e comprovar o resultado.Obrigado pela dica!
Thais Aquino Lima
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Fev 11, 2013 11:44
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: 8º ano
Andamento: cursando

Re: Regra de Três composta

Mensagempor Cleyson007 » Seg Abr 01, 2013 22:30

Ok Thais!

Desejo-lhe boa sorte em sua prova :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D