• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites trigonometricos

Limites trigonometricos

Mensagempor Erick » Sáb Mar 30, 2013 20:55

Ola, estou com um problema no seguinte exercicio:
\lim_{x->0}\frac{{(sen(x))}^{2}}{x}cos(\frac{1}{1-{5}^{x})} (obs:o cosseno é td a divisao) A primeira parte acredito q seja : \lim_{x->0}\frac{{(sen(x))}^{2}}{x}=\lim_{x->0}\frac{sen(x)}{x}sen(x)=1*0, certo?
Mas n sei como resolver a parte do cosseno, msm sabendo q provavelmente o resultado final sera 0 (ja q o lim do sen=0).Gostaria q me mostrassem como faço para resolver esta parte
Grato desde ja
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites trigonometricos

Mensagempor e8group » Sáb Mar 30, 2013 21:51

Dica multiplique o numerador e denominador por x , feito isto teremos a seguinte expressão :

\lim_{x\to 0} x\cdot \frac{sin^2(x)}{x^2} \cdot cos\left(\frac{1}{1-5^x} \right ) .

Através da propriedade "limite do produto é o produto dos limites " poderá argumentar que \lim_{x\to 0} sin(x)/x = 1 (limite trigonométrico fundamental) e que apesar de \lim_{x\to 0} cos\left(\frac{1}{1-5^x} \right ) não existir (pois o mesmo está oscilando de -1 a 1 ) ,como a função cosseno é limitada , e um dos termos do produto do limite a ser calculado tende a zero quando x\to 0 então \lim_{x\to 0} x\cdot \frac{sin^2(x)}{x^2} \cdot cos\left(\frac{1}{1-5^x} \right ) =  0 .

Outra forma de mostrar que x \cdot cos\left(\frac{1}{1-5^x} \right ) \to 0 quando x \to 0 é através do teorema do confronto .Para isto estabeleceremos a seguinte desigualdade que é verdadeira para todo x \neq 0 ,

1  \geq  cos\left(\frac{1}{1-5^x} \right )  \geq  -1 . Multiplicando membro a membro por x ,

x  \geq  xcos\left(\frac{1}{1-5^x} \right )  \geq  -x . De \lim_{x\to 0} x =  \lim_{x\to 0} - x =  0 \implies   \lim_{x\to 0} x \cdot cos\left(\frac{1}{1-5^x} \right ) = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)