por rs0039 » Seg Mar 18, 2013 14:47
Olá a todos,
Não consegui resolver o problema abaixo. Do livro de Gelson Iezzi, pág. 16.
Se puderem me ajudar agradeceria muito,
http://img144.imagevenue.com/img.php?im ... _182lo.jpgObrigado
-------------------Depois de postar, li, e postei...
Bom, fui ler as recomendações depois de ter postado.
Fiz tentativas sim de resolver o problema. Vou tentar colocar aqui. Ainda não sei como... Vou pesquisar...
De qualquer modo obrigado.
-------------
Tentando me explicar.
Primeiro peguei a dizima periódica 7,3636363636... e transformei numa fração.
Fiz 7,363636... = w
Fiz 736,363636.....= 100w
Depois subtrai uma da outra.
Ficou 729=99w
w ficou aquela divisao. 729 por 99.
Simplifiquei e obtive 81/11
OK
-----------
Depois x/y resulta em um quociente z com resto 8.
Fiz: zy+8=x
-----------
no fim não dá......... z fica racional
-
rs0039
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 18, 2013 14:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Sex Mar 29, 2013 01:44
Olá
rs0039,
seja bem-vindo!
Procure não postar link's externos, ok?!

Tiramos que,

e

.
Do enunciado,

Com efeito,

e

.
Segue que,

Questão muito interessante!!
A grande 'jogada' é notar que z = 7, pois o enunciado está se referindo a isso de maneira implícita!
Espero ter ajudado, a propósito, peço por gentileza que edite a sua mensagem (post), isto é, em vez do
link digite a questão (ou, adicione um anexo).
Atentamente,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por rs0039 » Seg Abr 01, 2013 09:30
Oi Daniel,
Muito obrigado. Vi que eu estava no caminho mas não consegui finalizar. O z=7 é meio difícil de ver. Vou tentar entender melhor.
Não consegui editar a mensagem para excluir o link externo. Então digitei o enunciado, segue abaixo.
É do livro do Iezzi, p. 16.
10. (UF-MG) Considere x, y e z números naturais. Na divisão de x por y, obtém-se quociente z e resto 8.
Sabe-se que a representação decimal de x/y é a dízima periódica 7,363636... Então, o valor de x+y+z é:
a) 190
b) 193
c) 191
d) 192
-
rs0039
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 18, 2013 14:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fundamentos da Matemática Elementar -Gelson Iezzi e Murakami
por Abelardo » Sáb Abr 09, 2011 19:33
- 4 Respostas
- 5728 Exibições
- Última mensagem por Abelardo

Sáb Abr 09, 2011 22:46
Funções
-
- [Radiciação] livro 2 do Iezzi- exercicio
por edilviana » Qui Fev 16, 2012 11:39
- 1 Respostas
- 1688 Exibições
- Última mensagem por edilviana

Qui Fev 16, 2012 12:35
Álgebra Elementar
-
- Duvida do livro do morgado de geometria
por igorcalfe » Dom Out 17, 2010 10:52
- 0 Respostas
- 1594 Exibições
- Última mensagem por igorcalfe

Dom Out 17, 2010 10:52
Geometria Plana
-
- Equação exponencial Iezzi B.69
por BrunoLima » Sáb Nov 23, 2013 00:06
- 9 Respostas
- 5411 Exibições
- Última mensagem por Addlink1114

Ter Ago 18, 2015 04:56
Equações
-
- Equação exponencial iezzi 71
por BrunoLima » Sáb Nov 23, 2013 21:38
- 5 Respostas
- 2179 Exibições
- Última mensagem por BrunoLima

Dom Nov 24, 2013 00:00
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.