por marcosmuscul » Ter Mar 26, 2013 12:52
segue abaixo a expressão.
Amigos, já tentei de todo jeito que eu pude mas não consigo sair desta situação. Se alguém puder me ajudar eu agradeço.
- Anexos
-

- esta é a expressão
- limite.JPG (5.34 KiB) Exibido 1866 vezes
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por Russman » Ter Mar 26, 2013 14:08
É só ir fatorando os termos.

Agora para

não há problema. Você deve calcular

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por marcosmuscul » Ter Mar 26, 2013 19:48
obrigado amigo. calculo esclarecedor.
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- * Trigonometria : Questões simples que não consigo fazer!!!
por Thiago Valenca » Seg Abr 16, 2012 17:38
- 4 Respostas
- 2791 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 21, 2012 17:47
Trigonometria
-
- consigo fazer tudo e sempre enrosco no final.
por ricardosanto » Ter Abr 17, 2012 22:34
- 1 Respostas
- 1499 Exibições
- Última mensagem por TheoFerraz

Ter Abr 17, 2012 23:42
Cálculo: Limites, Derivadas e Integrais
-
- [nao consigo fazer desde o inicio] nunca fiz sozinho só
por jeffinps » Ter Fev 26, 2013 14:47
- 4 Respostas
- 2783 Exibições
- Última mensagem por jeffinps

Qua Fev 27, 2013 15:21
Cálculo: Limites, Derivadas e Integrais
-
- [limite] Cancelar denominador
por emanes » Sex Ago 17, 2012 09:34
- 1 Respostas
- 1632 Exibições
- Última mensagem por e8group

Sex Ago 17, 2012 10:22
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raiz de X no denominador
por janainasabidussi » Dom Out 26, 2014 17:42
- 1 Respostas
- 2084 Exibições
- Última mensagem por adauto martins

Seg Out 27, 2014 14:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.