• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Provar limite

[Limite] Provar limite

Mensagempor Luciana Bittencourt » Qui Mar 21, 2013 15:10

Prove que existe um \delta > 0 tal que

1 - \delta < x < 1 + \delta \Rightarrow 2 - \frac{1}{3} < x^2 + x < 2 + \frac{1}{3}


Como fazer? Até hoje não consegui aprender como provar limites usando a definição...
Luciana Bittencourt
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 21, 2013 12:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limite] Provar limite

Mensagempor e8group » Qui Mar 21, 2013 18:49

Resolução :


(a)

Dado um \epsilon > 0 ,existe um \delta > 0 suficiente pequeno que torne verdadeira a seguinte afirmação :

1 - \delta <x < 1 +\delta  \implies 2-\frac{1}{3} <x^2 + x < 2 +\frac{1}{3}


(b)
Prova :

Observe que 1 - \delta <x < 1 +\delta  \implies 2-\frac{1}{3} <x^2 + x < 2 +\frac{1}{3} é equivalente a 0<|x-1| < \delta  \implies  0<|x^2 + x -2| < \frac{1}{3} .

Assim,

|x^2 + x -2|= |x^2 + x -2| = |(x-1)(x+2)| = |x-1||x+2| \leq |x-1|(|x|+2) \leq |x-1|(|x-1| +3) .

Logo ,

|x-1|(|x-1| +3) < \delta (\delta +3) .

De \delta \to 0^+  \implies  \delta(\delta +3)   \to 0^+,isto prova o resultado anunciado em (a) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59