por laura_biscaro » Seg Mar 18, 2013 15:39
Para acelerar a pavimentação de uma estrada, três empreiteiras, A, B, C foram contratadas. Coube a empreiteira A, 3/8 da estrada, á empreiteira B, 5/32 da estrada e o restante, de 45 km, para a empreiteira C.
Assinale a alternativa correta.
a) o total a ser pavimentado é de 90km
b) a empreiteira A pavimentou 21km a mais que a empreiteira B
c) a empreiteira A pavimentou 15 km
d) a empreiteira C pavimentou 17/32 da estrada
e) a empreiteira B pavimentou 36km
-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por marinalcd » Seg Mar 18, 2013 16:48
Bom, temos que:

do total da estrada.
Assim, ainda faltam

, que corresponde aos 45 km da empreiteira C.
Dividimos os 45 km por 15, para saber quanto é

da estrada:

= 3 km.
Assim, cada

de estrada corresponde 3 km.
Portanto a empreiteira A construiu

, ou seja, A pavimentou 3 . 12 = 36 km;
B pavimentou 3 . 5 = 15 km e,
C pavimentou os 45 km restantes.
Logo a estrada toda tem 36 + 15 + 45 = 96 km.
Analisando as alternativas, vemos que A pavimentou 21 km a mais do que B (36 km - 15 km = 21 km)
Logo a resposta é a alternativa B.
Espero ter ajudado!!!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por laura_biscaro » Seg Mar 18, 2013 16:54
ajudou muito! haha
muito obrigada

-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida equação do 1 grau
por tadeutato » Qua Abr 27, 2011 14:24
- 1 Respostas
- 1437 Exibições
- Última mensagem por Neperiano

Qua Abr 27, 2011 14:29
Cálculo: Limites, Derivadas e Integrais
-
- Equação de 2º grau - Dúvida
por Brenitchow » Qua Jun 20, 2012 17:25
- 1 Respostas
- 1464 Exibições
- Última mensagem por MarceloFantini

Qua Jun 20, 2012 20:47
Sistemas de Equações
-
- Problemas equação 1° grau, dúvida.
por Clairelz12 » Sáb Ago 29, 2009 03:44
- 4 Respostas
- 7453 Exibições
- Última mensagem por Elcioschin

Sáb Ago 29, 2009 19:18
Álgebra Elementar
-
- [Equação 1º Grau] - Dúvida na resolução
por FernandoBasso » Qua Set 21, 2011 08:54
- 1 Respostas
- 1619 Exibições
- Última mensagem por MarceloFantini

Qua Set 21, 2011 16:13
Álgebra Elementar
-
- Equação do segundo grau dúvida
por LuizCarlos » Qui Mai 10, 2012 20:21
- 1 Respostas
- 1306 Exibições
- Última mensagem por LuizCarlos

Qui Mai 10, 2012 23:02
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.