• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo I] Limites envolvendo raízes.

[Calculo I] Limites envolvendo raízes.

Mensagempor Jefferson_mcz » Seg Mar 18, 2013 14:00

Estava tentando resolver estes limites sendo que sempre emperro no meio do caminho ;s alguém poderia ajudar ? ;D
1)\lim_{x\rightarrow2}\frac{x^2-4}{\sqrt[]{x+2}-\sqrt[]{3x-2}}

2)\lim_{x\rightarrow1}\frac{\sqrt[]{x^2-3x+3}-\sqrt[]{x^2+3x-3}}{x^2-3x+2}
Jefferson_mcz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Mar 16, 2013 11:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Calculo I] Limites envolvendo raízes.

Mensagempor young_jedi » Seg Mar 18, 2013 20:35

vamos tomar o primeiro como exemplo

\lim_{x\to2}\frac{x^2-4}{\sqrt{x+2}-\sqrt{3x-2}}

\lim_{x\to2}\frac{x^2-4}{\sqrt{x+2}-\sqrt{3x-2}}.\frac{\sqrt{x+2}+\sqrt{3x-2}}{\sqrt{x+2}+\sqrt{3x-2}}

\lim_{x\to2}\frac{x^2-4}{(\sqrt{x+2})^2-(\sqrt{3x-2})^2}.\frac{\sqrt{x+2}+\sqrt{3x-2}}{1}

\lim_{x\to2}\frac{(x^2-4)(\sqrt{x+2}+\sqrt{3x-2})}{x+2-3x+2}

\lim_{x\to2}\frac{(x^2-4)(\sqrt{x+2}+\sqrt{3x-2})}{-2x+4}

\lim_{x\to2}\frac{(x-2)(x+2)(\sqrt{x+2}+\sqrt{3x-2})}{-2(x-2)}

simplificando (x-2)

\lim_{x\to2}\frac{(x+2)(\sqrt{x+2}+\sqrt{3x-2})}{-2}

\lim_{x\to2}\frac{(x+2)(\sqrt{x+2}+\sqrt{3x-2})}{-2}=-8

tente fazer o mesmo para o segundo e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.