• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria plana pontos notáveis

Geometria plana pontos notáveis

Mensagempor matematicodabaixada » Dom Mar 17, 2013 05:41

Não sei especificamente de onde esta questão é , porém acredito que seja de alguma olímpiada

A distância do circuncentro ao baricentro de um triângulo cujas três alturas medem: 0,333.....cm , 0,2 cm e 0,25 cm é expressa pelo número racional : m/n , com m e n sendo números naturais primo entre si. A quantidade de quadrados cujos lados são expressos por números que dividem o número(m+n) é:

a) zero
b) um
c) dois
d) três
e) quatro

Sinceramente eu não entendi como vou encontrar esta distância do circuncentro ao baricentro. Por favor me ajudem!!!!!
matematicodabaixada
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 17, 2013 05:14
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}