• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de uma função trigonométrica

Limite de uma função trigonométrica

Mensagempor Douglas16 » Sáb Mar 16, 2013 21:52

\lim_{x\rightarrow\frac{\Pi}{2}} \left(\Pi-2x \right)tan\left(x \right)
Como \left(\Pi-2x \right) e cos x tendem a zero quando x\rightarrow\frac{\Pi}{2}, então o limite existe.
Agora só não sei se devo anular \left(\Pi-2x \right) com cos x, para eliminar a indeterminação ou devo procurar uma identidade para resolver o limite.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Sáb Mar 16, 2013 23:39

Note que , (\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{cos(x)} .


De cos(x) = sin(\frac{\pi}{2} -x) segue ,
(\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{sin(\frac{\pi}{2} -x)} = 2 \cdot \frac{sin(x)}{\dfrac{sin(\dfrac{\pi}{2} -x)}{\dfrac{\pi}{2} -x}} .



Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor Douglas16 » Dom Mar 17, 2013 00:07

Eu tinha conseguido resolver antes de verificar se alguém tinha respondido, mas entendi sua resolução, e considerei mais simples que a minha resolução, bastava apenas lembrar da propriedade de que cosx=sin\left(\frac{\Pi}{2}-x \right).
Tipo, eu me impressiono comigo mesmo pela falta de capacidade de lembrar de coisas óbvias, vou tentar me concertar e vê o que está acontecendo comigo.
O que você faz para encontrar a resolução tão facilmente, tipo, você não esquece dessas propriedades?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Dom Mar 17, 2013 00:34

Apenas deduzo ,não consigo lembrar muitas coisas .Do ponto de vista geométrico é fácil ver que cos(x) = sin(\pi/2 - x) .De fato , sin(a+b) = sin(a)cos(b) + cos (a) sin(b) confirma isto ,onde a = \pi/2 e b = -x.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: