• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Função Implicita

[Derivada] Função Implicita

Mensagempor fabriel » Sex Mar 15, 2013 13:27

Oi Pessoal estou com uma pequena duvida nesse exercicio:
Quero calcula a seguinte derivada da função implicita
tg(y)=xy
ai cheguei no seguinte:
\frac{d}{dx}\left(tg(y) \right)=\frac{d}{dx}\left(xy \right)
Ai cheguei nessa expressão:
{sec}^{2}y\frac{dy}{dx}=y+\frac{dy}{dx}x
ou
\frac{dy}{dx}=\frac{y+\frac{dy}{dx}x}{{sec}^{2}x}

mas ai não consigo sair dessa expressão, eu errei em algum calculo??
Obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Derivada] Função Implicita

Mensagempor e8group » Sex Mar 15, 2013 21:50

Usarei a seguinte notação D_x para derivada de primeira ordem com respeito a x . Somando-se - x \cdot D_x y em ambos membros ,obtemos

sec^2(y) D_x y - x \cdot D_x y = y ,deixando em evidência D_x y , segue


[sec^2(y) - x] D_x y = y ; logo ,

D_x y = \frac{y}{sec^2(y) - x}  , sec^2(y) \neq  x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.