por anneliesero » Ter Mar 12, 2013 22:04
Olá, pessoal
Poderia me ajudar aqui!

Conhecendo as propriedades distributivas da união e intersecção e

, obtenha

O gabarito deu:

''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
-
anneliesero
- Usuário Parceiro

-
- Mensagens: 86
- Registrado em: Qui Set 13, 2012 17:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por timoteo » Ter Mar 12, 2013 23:55
Olá tudo bem.
Olha eu fiz assim: criei um conjunto vazio (
0) unido com C e depois uni este com o conjunto n(A

B), ficou assim;
n(A

B)

n(C

0) = n(A) + n (B) - n(A

B) + n(C) + n(0) - n(C

0) = n(A) + n (B) + n(C) + n(0) - n(A

B) + [- n(C

0)] = n(A) + n (B) + n(C) + n(0) - n(A

B

C

0) = n( A

B

C).
Espero ter ajudado!
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8679 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Teoria dos conjuntos] Questão de conjuntos
por VitorFN » Qua Fev 14, 2018 01:07
- 1 Respostas
- 7694 Exibições
- Última mensagem por DarioCViveiros

Sex Fev 23, 2018 18:35
Conjuntos
-
- Teoria dos Conjuntos
por tertulia » Seg Dez 27, 2010 17:47
- 3 Respostas
- 3277 Exibições
- Última mensagem por Drakangt

Seg Dez 29, 2014 14:29
Álgebra Elementar
-
- Teoria dos conjuntos
por joseailton » Seg Mar 05, 2012 02:20
- 1 Respostas
- 1791 Exibições
- Última mensagem por timoteo

Seg Mar 05, 2012 09:32
Álgebra Elementar
-
- Teoria dos Conjuntos
por petras » Sex Jan 22, 2016 21:35
- 1 Respostas
- 2664 Exibições
- Última mensagem por DarioCViveiros

Sex Fev 23, 2018 18:51
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.