• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida de MMC

Dúvida de MMC

Mensagempor eliky » Sex Mar 08, 2013 15:43

Estou com uma duvida de matemática básica:

Quando tenho uma equação x/2 + x/3 = 2

Para resolver eu tenho que tirar o minimo dos elementos do lado esquerdo e do lado direito juntos, ou eu posso tirar só entre o x/2 + x/3 e depois continuar a resolver a equação?

Obrigado!
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida de MMC

Mensagempor timoteo » Sex Mar 08, 2013 19:44

você pode fazer das duas maneiras! mas tenha cuidado nos cálculos, eles podem te enganar...

o melhor é revisar um livro de ensino médio!

abraços!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Dúvida de MMC

Mensagempor eliky » Sex Mar 08, 2013 20:40

Entendi, obrigado! : D
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}