por Victor Franca » Seg Mar 04, 2013 21:05
Provar por PIF:

Como faria?
Fiz assim, primeiro:

Segundo:
(Hipótese)

Provando:

Para qualquer número natural não nulo essa proposição é verdadeira.
Seria assim? Me parece que ficou meio vago provar dessa forma, apesar de realmente a última proposição ser verdadeira.
Outra questão é a seguinte:

Essa eu estou me embolando... Não estou conseguindo iniciar a questão
O ruim dos livros do Iezzi é que o gabarito é muito incompleto...
-
Victor Franca
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mar 04, 2013 20:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Seg Mar 04, 2013 23:43
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Princípio da Indução Finita
por Fontelles » Dom Jan 17, 2010 14:42
- 9 Respostas
- 77177 Exibições
- Última mensagem por Vennom

Qui Abr 26, 2012 23:04
Funções
-
- PIF - Principio da Indução Finita
por ederj » Seg Jun 28, 2010 13:35
- 3 Respostas
- 7572 Exibições
- Última mensagem por Tom

Sex Jul 02, 2010 20:01
Funções
-
- Princípio de Indução Finita (PIF)
por Jorge Rodrigo » Qui Jun 09, 2011 17:37
- 1 Respostas
- 5145 Exibições
- Última mensagem por MarceloFantini

Qui Jun 09, 2011 20:44
Álgebra Elementar
-
- Princípio da Indução Finita
por silvia fillet » Qui Out 20, 2011 12:04
- 3 Respostas
- 8874 Exibições
- Última mensagem por silvia fillet

Sex Out 21, 2011 17:33
Álgebra Elementar
-
- [PIF] Princípio de indução finita
por Beckyh » Qua Abr 11, 2012 06:45
- 2 Respostas
- 5665 Exibições
- Última mensagem por Beckyh

Qui Abr 12, 2012 00:21
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.