• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Quociente

Inequação Quociente

Mensagempor Luis_Hgl » Qua Fev 27, 2013 13:18

Olá, gostaria de saber como resolver certas inequações, visto que, sei somente o básico delas. E esses exercícios que estou fazendo são para fixação do conteúdo.:
a-)Para todo x real x²-kx+1/x²-6x+10>=0;
Luis_Hgl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 27, 2013 13:09
Formação Escolar: GRADUAÇÃO
Área/Curso: História
Andamento: cursando

Re: Inequação Quociente

Mensagempor young_jedi » Sex Mar 01, 2013 23:13

veja que a equação do denominador é uma parabola

x^2-6x+10

ela não tem raizes reais e sua concavidade é voltada para cima sendo, assim para qualquer valor de x ela é positiva
portanto para que a expressão seja sempre maior que zero, é necessario que a expressão do numerador tambem sempre seja positiva, como a equação é do tipo

x^2-kx+1

temos que é uma parabola voltada para cima, por isso temos que garantir que seu vetice esteja acima de y=0

ou seja

\frac{-(k^2-4.1.1)}{4.1} \geq 0

portanto

k^2-4 \leq 0

k^2\leq 4

-\sqrt{4}\leq k \leq \sqrt{4}

-2\leq k \leq 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}