por barbara-rabello » Qua Fev 27, 2013 16:24
Não estou conseguindo resolver essa integral. É por substituição simples?
![\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv \frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv](/latexrender/pictures/7df9e4a70171717c1c6c6a881dcdaec5.png)
Obrigada!
-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Jhonata » Qua Fev 27, 2013 17:10
barbara-rabello escreveu:Não estou conseguindo resolver essa integral. É por substituição simples?
![\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv \frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv](/latexrender/pictures/7df9e4a70171717c1c6c6a881dcdaec5.png)
Obrigada!
Vamos lá:
Inicialmente, pelas propriedades da integral, podemos reescrevê-la:
![\frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv = \frac{1}{2} (\int_{0}^{1} \sqrt[]{v^{2}+8} dv - \int_{0}^{1}v dv) \frac{1}{4} \int_{0}^{1} 2\sqrt[]{v^{2}+8} - 2v dv = \frac{1}{2} (\int_{0}^{1} \sqrt[]{v^{2}+8} dv - \int_{0}^{1}v dv)](/latexrender/pictures/3444970fba3fd66ef4f35f666e81553e.png)
A segunda integral é facilmente obtida de modo que:

A primeira integral é feita por substituição trigonométrica. Tomamos:
![v = 2\sqrt[]{2}tgu v = 2\sqrt[]{2}tgu](/latexrender/pictures/24c6c24b035e61589db2c1e3eadaa518.png)
e
![dv = 2\sqrt[]{2}sec^2udu dv = 2\sqrt[]{2}sec^2udu](/latexrender/pictures/f9292b61cad7b3182efccaf211acdeff.png)
.
Então quando
![\sqrt[]{x^2+8}= \sqrt[]{8tg^2u+8} \sqrt[]{x^2+8}= \sqrt[]{8tg^2u+8}](/latexrender/pictures/9b088504ccb2a996bf9ec5899f5e3f78.png)
. Aplicando a identidade trigonométrica tg²u = sec²u - 1 substituimos, então:
![\sqrt[]{8tg^2u+8} = \sqrt[]{8(sec^2x-1)+8} = 2\sqrt[]{2}secu. \sqrt[]{8tg^2u+8} = \sqrt[]{8(sec^2x-1)+8} = 2\sqrt[]{2}secu.](/latexrender/pictures/652b9023e2ffba1b7318555dd0c9bd3f.png)
Fazendo as substituições, vamos obter a integral:
![\int_{0}^{1} \sqrt[]{v^{2}+8} dv = \int_{0}^{1}2\sqrt[]{2}sec^2u2\sqrt[]{2}secu du = 8\int_{0}^{1}sec^3u du \int_{0}^{1} \sqrt[]{v^{2}+8} dv = \int_{0}^{1}2\sqrt[]{2}sec^2u2\sqrt[]{2}secu du = 8\int_{0}^{1}sec^3u du](/latexrender/pictures/616dbf49ec4756c43f387bc3a70e6aeb.png)
Tente resolver a partir dai, e lembre-se de 'juntar' o resultado já obtido na primeira integral e retornar a variável inicial 'v' na segunda.
Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por barbara-rabello » Qua Fev 27, 2013 18:24
Olá!
Eu não poderia resolver a integral por substituição simples?
Por exemplo: w = v² +8
dw = 2v.
Eu tinha tentado assim, só fiquei na dúvida quanto ao sinal, pois o 2v é negativo.
-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Jhonata » Qui Fev 28, 2013 00:53
.
Editado pela última vez por
Jhonata em Qui Fev 28, 2013 00:58, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Jhonata » Qui Fev 28, 2013 00:55
Jhonata escreveu:barbara-rabello escreveu:Olá!
Eu não poderia resolver a integral por substituição simples?
Por exemplo: w = v² +8
dw = 2v.
Eu tinha tentado assim, só fiquei na dúvida quanto ao sinal, pois o 2v é negativo.
Olá bárbara.
O exercício até induz a fazer isso mesmo, mas não é tão simples quanto parece. hehe.
Mas se você olhar atentamente, o "-2" é uma parcela, não um fator de multiplicação, então, particularmente, não dá pra fazer por substituição simples e acho que a forma que mostrei é a correta.
Conseguiu resolver o restante do que deixei? Espero que sim. Se você tiver o gabarito da questão, poste aí pra ver se conseguimos chegar à uma conclusão. Ou já posso postar minha resposta direto de onde parei.
Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por barbara-rabello » Qui Fev 28, 2013 14:07
Obrigada pelo esclarecimento!
Nem tinha pensado nisso. Já fui tentando logo pelo jeito mais fácil.
A resposta é

.
Mas não cheguei nesse resultado. Devo estar fazendo alguma coisa errada.
-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4144 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4218 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2705 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2724 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.