por Douglas16 » Qui Fev 28, 2013 12:30
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Jhonata » Qui Fev 28, 2013 13:41
Douglas16 escreveu:![\lim_{x\rightarrow-\propto}x\sqrt[]{x*x+1}+x*x \lim_{x\rightarrow-\propto}x\sqrt[]{x*x+1}+x*x](/latexrender/pictures/b9a901041cb0dd575d786979d7d9c3a3.png)
Podemos reescrever o limite:
![\lim_{x\rightarrow-\propto}x^2+x\sqrt[]{x^2+1} \lim_{x\rightarrow-\propto}x^2+x\sqrt[]{x^2+1}](/latexrender/pictures/35b8bf761da4e43b9360eb5d73c5d8d8.png)
E multiplicar o numerador e o denominador por:
![\frac{x^2-x\sqrt[]{x^2+1}}{x^2-x\sqrt[]{x^2+1}} \frac{x^2-x\sqrt[]{x^2+1}}{x^2-x\sqrt[]{x^2+1}}](/latexrender/pictures/0041d759dacf4b2adde4707e69735ed8.png)
Fazendo as operações algébricas necessárias no numerador, vamos obter:
![\lim_{x\rightarrow-\propto}\frac{x^4+x^3\sqrt[]{x^2+1}-x^3\sqrt[]{x^2+1}-x^2(x^2+1)}{x^2-x\sqrt[]{x^2+1}} \lim_{x\rightarrow-\propto}\frac{x^4+x^3\sqrt[]{x^2+1}-x^3\sqrt[]{x^2+1}-x^2(x^2+1)}{x^2-x\sqrt[]{x^2+1}}](/latexrender/pictures/7fcb7ec42222995957e141f1b9e916e6.png)
Simplificando:
![\lim_{x\rightarrow-\propto}\frac{x^4-x^4-x^2}{x^2-x\sqrt[]{x^2+1}} = \lim_{x\rightarrow-\propto}\frac{-x^2}{x^2-x\sqrt[]{x^2+1}}=\lim_{x\rightarrow-\propto}\frac{-x}{x-\sqrt[]{x^2+1}} \lim_{x\rightarrow-\propto}\frac{x^4-x^4-x^2}{x^2-x\sqrt[]{x^2+1}} = \lim_{x\rightarrow-\propto}\frac{-x^2}{x^2-x\sqrt[]{x^2+1}}=\lim_{x\rightarrow-\propto}\frac{-x}{x-\sqrt[]{x^2+1}}](/latexrender/pictures/2d379e475495f63275afbf1b7a172d51.png)
Tente resolver o limite a partir daí.
Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Resolução de um limite de uma função (a solução é -3)
por Douglas16 » Qua Fev 27, 2013 20:38
- 6 Respostas
- 2765 Exibições
- Última mensagem por Douglas16

Qua Fev 27, 2013 23:17
Cálculo: Limites, Derivadas e Integrais
-
- Função inversa, Solução
por Deronsi » Ter Nov 06, 2012 00:29
- 4 Respostas
- 2075 Exibições
- Última mensagem por Deronsi

Ter Nov 06, 2012 08:08
Funções
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3096 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO
por beel » Sex Set 02, 2011 15:14
- 2 Respostas
- 1596 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO 2
por beel » Sex Set 02, 2011 17:58
- 2 Respostas
- 1586 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.