• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mack-SP

Mack-SP

Mensagempor -Sarah- » Sáb Fev 23, 2013 18:56

(Mack-SP) Os valores de x para os quais log5^(x^2 - 3/2x) < 0, são:

a) -1/2<x<0 ou 3/2<x<2

b) 0<x<3/2

c) -1/2<x<2

d) x<0 ou x>3/2
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Seg Fev 25, 2013 21:27

\log 5^{x^2-\frac{3}{2}x}<0

x^2-\frac{3}{2}x.\log 5<0

x\left(x-\frac{3}{2}\right).log5<0

como log 5 é menor que zero então é um valor negativo portanto a expressão que esta multiplicando tem que ter valor possitivo, ou seja

x\left(x-\frac{3}{2}\right)>0

portanbto

x<0 ou x>3/2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:01

Muito obrigada! Mas, fiz de outro modo e não alcancei o mesmo resultado, não sei o que pode estar errado:

log5^(x^2-3/2x) <0
log5^(x^2-3/2x) < log5^1
x^2 -3/2x - 1 < 0
X1= 2
x2= -1/2

C.E
x^2-3/2>0
x(x-3/2)>0
X>0
X>3/2

Então {x E R I -1/2<x<0 ou 3/2 <x<2}
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Ter Fev 26, 2013 20:14

na verdade voce tem que

\log5^{x^2-3/2x}<log1

\log5^{x^2-3/2x}<log5^0

dai

x^2-3/2x>0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:20

Oh God.. Ok Obrigada!
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59