por walterdavid » Qui Out 01, 2009 21:21
Boa noite pessoal. Estou com dúvida em algumas questões se puderem me ajudar seria ótimo.
1.resolver pelo teorema fundamental do cálculo

no meus livros não constam resolução com módulo entao não sei nem como começar
2

dispensa e
3

4: encontre os valores de c tal que a área da região limitada pelas parábolas

e

seja 576.
essa eu já tentei de tudo. mas esto com dificuldades pra enxergar a interseção formada e consequentemente os limites de integração. seria de -c á c? por que para descobrir os limites de int. em uma equação de área faz-se a interseção das equações certo?
agradeço a ajuda
Walter
-
walterdavid
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Out 01, 2009 20:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por Lucio Carvalho » Sex Out 02, 2009 14:55
Olá Walter,
Tentarei explicar os exercícios.
No 1º exercício, devemos lembrar que f(x) = |x + 1| =
-(x + 1) se x < -1
(x + 1) se x >= -1
Assim:


No 2º exercício, devemos lembrar por integração imediata que:
![\int_{}^{}\frac{f'(x)}{1+{f}^{2}(x)}dx=arctg[f(x)]+k \int_{}^{}\frac{f'(x)}{1+{f}^{2}(x)}dx=arctg[f(x)]+k](/latexrender/pictures/b5e4810fc3626b972228115f1f8ecb9a.png)
Assim:

![\int_{1}^{{e}^{\frac{\pi}{4}}}\frac{4}{t(1+{ln}^{2}t)}dt=4.arctg[ln({e}^{\frac{\pi}{4}})]-4.arctg[ln(1)] \int_{1}^{{e}^{\frac{\pi}{4}}}\frac{4}{t(1+{ln}^{2}t)}dt=4.arctg[ln({e}^{\frac{\pi}{4}})]-4.arctg[ln(1)]](/latexrender/pictures/999b03402f9b815cbda4accf63acdba8.png)

No terceiro exercício, sabemos por integração imediata que:

Assim:


No 4º exercício, primeiro determinamos os limites de integração fazendo:


(limite inferior)

(limite superior)
Em seguida:
![\int_{-c}^{c}[({c}^{2}-{x}^{2})-({x}^{2}-{c}^{2})]dx=576 \int_{-c}^{c}[({c}^{2}-{x}^{2})-({x}^{2}-{c}^{2})]dx=576](/latexrender/pictures/a2ac0d8d98ae308f1a78f36b9adc1c40.png)


![c=\sqrt[3]{216}=6 c=\sqrt[3]{216}=6](/latexrender/pictures/6c2343e19cd73b0ffe9bb46acf7db278.png)
Espero ter ajudado e até breve!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por walterdavid » Ter Out 06, 2009 20:33
nos cara ajudo demais da conta
muito obrigado mesmo
-
walterdavid
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Out 01, 2009 20:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integral] Volumes
por dehcalegari » Qui Ago 29, 2013 17:27
- 4 Respostas
- 2470 Exibições
- Última mensagem por dehcalegari

Sex Ago 30, 2013 11:49
Cálculo: Limites, Derivadas e Integrais
-
- Integral - áreas
por Danilo » Sáb Nov 09, 2013 18:42
- 1 Respostas
- 1914 Exibições
- Última mensagem por e8group

Sex Nov 15, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Áreas
por Danilo » Sex Nov 15, 2013 19:03
- 2 Respostas
- 3386 Exibições
- Última mensagem por Man Utd

Qui Nov 21, 2013 17:20
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por pinkfluor » Qui Jul 21, 2011 11:38
- 3 Respostas
- 2746 Exibições
- Última mensagem por pinkfluor

Qui Jul 21, 2011 17:21
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por AlbertoAM » Ter Jun 28, 2011 00:25
- 5 Respostas
- 6384 Exibições
- Última mensagem por AlbertoAM

Qua Jun 29, 2011 20:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.