• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar o ângulo teta

Achar o ângulo teta

Mensagempor iarapassos » Seg Fev 25, 2013 18:46

a equação abaixo tem solução?
1-sen\theta=-cos2\theta

como cos 2\theta= 1- 2sen^2\theta

Fazemos:

1 -sen\theta+cos2\theta=0

cos2\theta-sen\theta=-1

1-2sen^2\theta-sen\theta=-1

-2sen^2-sen\theta=-2

-sen\theta(2sen\theta-1)=-2

Como achar o valor do ângulo \theta a partir daí? Até aí onde fiz tá certo?

Obrigada?
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Achar o ângulo teta

Mensagempor sauloandrade » Seg Fev 25, 2013 19:36

Então vamos lá:
1-sen ?=-cos2?
1-sen ?=- (cos²? - sen²?), mas sen²? +cos²?=1 ... cos²?=1 - sen²?
1-sen ?= - (1 - sen²? -sen²?)
1-sen ?= -( 1- 2sen²?)
1-sen ?=-1 +2sen²?
2sen²?+sen ?- 2=0 adotando k=sen ?:
2k²+k-2=0
Quando resolver isso ai, achará: k=1,280 ou k=0,780. Os resultados foram aproximados, eu fiz na calculadora.
Perceba que k=1,280 é absurdo já que o máximo do seno é 1 e o mínimo é menos 1.

Você tem o gabarito?
sauloandrade
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 28, 2012 12:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Achar o ângulo teta

Mensagempor Russman » Seg Fev 25, 2013 20:13

Como

1 - \sin \theta  = - \cos 2\theta

e

\cos 2\theta = 1 - \sin^2 \theta

então

1 - \sin \theta = -1 +  2\sin^2 \theta

de forma que , tomando \sin \theta = w, temos

1 - w = -1 +2 w^2 \Rightarrow 2w^2 + w - 2 = 0 .

A solução desta equação é

w = \frac{-1 \pm \sqrt{1^2-4.2.(-2)}}{4} = \frac{-1 \pm \sqrt{17} }{4}

de onde obtemos

\sin \theta = \left\{\begin{matrix}
\frac{-1 + \sqrt{17} }{4}\\ 
\frac{-1 - \sqrt{17} }{4}
\end{matrix}\right.

Supondo que \theta é Real você deve descartar a 2° solução.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.