• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[progressao aritimetica] termo de uma p.a

[progressao aritimetica] termo de uma p.a

Mensagempor santtus » Seg Fev 18, 2013 19:33

Seja a sequência (3x – 2, 4x + 1, x2 – 2) uma progressão aritmética, cujos termos são todos positivos. O quinto
termo dessa sequência é
santtus
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Fev 08, 2013 02:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [progressao aritimetica] termo de uma p.a

Mensagempor Cleyson007 » Seg Fev 18, 2013 20:22

Você encontrará o valor de x, fazendo:

2° termo - 1° termo = 3° termo - 2° termo (Razão da P.A)

Para o quinto termo, faça: a5 = a1 + 4r

Até mais.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [progressao aritimetica] termo de uma p.a

Mensagempor santtus » Seg Fev 18, 2013 21:31

obrigado cleyson007
santtus
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Fev 08, 2013 02:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.