por Brendon » Sáb Fev 16, 2013 14:32
Ola, como ficaria esses dois exemplos que eu nao conseguir fazer
Ex: Determine o trigesimo termo da P.A. (3, 7, 11, 15,...)
Ex: Numa P.A de 18 termos, o primeiro termo é : -20 e o ultimo é 31, calcule a razao da P.A?
eu n consigo achar o resultado certo, nao sei o que estou fazendo de errado
eu faço da seguinte maneira
An= 30 a1= 3 r=4
an = a1 + (n- 1). r
meu resiltado es ta dando 128 nesse exemplo 1
e no exemplo 2 esta dando 10
-
Brendon
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 16, 2013 14:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Rafael16 » Sáb Fev 16, 2013 15:55
Olá Brendon!
Ex: Determine o trigésimo termo da P.A. (3, 7, 11, 15,...)

--> Para sabermos a razão, basta pegar um termo qualquer e subtrair pelo termo antecessor, por exemplo 15 - 11 = 4.


Ex: Numa P.A de 18 termos, o primeiro termo é : -20 e o ultimo é 31, calcule a razão da P.A.?



Abraço!
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Brendon » Sáb Fev 16, 2013 17:58
Mto obg Rafa !!! Valeu pela ajuda !!
-
Brendon
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 16, 2013 14:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PG Termo geral
por apotema2010 » Seg Mar 01, 2010 10:18
- 2 Respostas
- 1990 Exibições
- Última mensagem por apotema2010

Qua Mar 03, 2010 11:10
Progressões
-
- Termo geral PA
por yanagranhen » Seg Jun 21, 2010 22:06
- 2 Respostas
- 5211 Exibições
- Última mensagem por yanagranhen

Seg Jun 21, 2010 23:16
Progressões
-
- [Termo geral]
por GrazielaSilva » Dom Set 30, 2012 15:24
- 2 Respostas
- 1970 Exibições
- Última mensagem por GrazielaSilva

Qui Out 04, 2012 12:20
Progressões
-
- Mostre que (Termo Geral)
por Cleyson007 » Seg Jul 11, 2011 20:50
- 5 Respostas
- 2275 Exibições
- Última mensagem por LuizAquino

Ter Jul 12, 2011 09:59
Cálculo: Limites, Derivadas e Integrais
-
- [Progressão] Termo Geral da PA
por Jennifer Moreira » Sáb Out 22, 2011 11:20
- 2 Respostas
- 1702 Exibições
- Última mensagem por MarceloFantini

Sáb Out 22, 2011 15:17
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.