por Aniinha » Qua Fev 13, 2013 17:45
Oi gente, sou nova aqui no fórum então se algo estiver errado me orientem

Então ... to com uma dúvida, em integral tripla. Eu não sei como achar os intervalos de integração e como ficaria num gráfico essa seguinte integral :

onde T é delimitada por

Grata ^^
-
Aniinha
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Fev 13, 2013 17:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de automação
- Andamento: cursando
por young_jedi » Qui Fev 14, 2013 12:12
das equações temos que

como ela é delimintado por x=0 e

então integral em x vai de 0 ate 2
portanto a integral fica

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Aniinha » Qui Fev 14, 2013 23:03
No enunciado da questão, esqueci de tmb por z=0, muda alguma coisa?
Tentei ir por esse seu intervalo aí, e não cheguei na resposta ! :/
-
Aniinha
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Fev 13, 2013 17:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de automação
- Andamento: cursando
por young_jedi » Sex Fev 15, 2013 10:33
não, na verdade eu fiz imaginando que z=0 mesmo
so confirme se x=0 e y=0
e se tiver como colocar a resposta ajudaria
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral Tripla
por Cleyson007 » Qua Mai 16, 2012 11:41
- 2 Respostas
- 1975 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 20:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla
por DanielFerreira » Dom Jun 10, 2012 19:27
- 1 Respostas
- 1611 Exibições
- Última mensagem por Russman

Seg Jun 11, 2012 00:39
Cálculo: Limites, Derivadas e Integrais
-
- INTEGRAL TRIPLA
por Garota nerd » Qua Jun 27, 2012 17:40
- 4 Respostas
- 2957 Exibições
- Última mensagem por Garota nerd

Qui Jun 28, 2012 01:28
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla
por DanielFerreira » Sáb Jul 07, 2012 13:00
- 2 Respostas
- 1778 Exibições
- Última mensagem por DanielFerreira

Dom Jul 08, 2012 13:01
Cálculo: Limites, Derivadas e Integrais
-
- Integral Tripla!
por samysoares » Sáb Nov 09, 2013 00:23
- 1 Respostas
- 1235 Exibições
- Última mensagem por Man Utd

Sex Nov 15, 2013 15:09
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.