• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Moedas

Moedas

Mensagempor andersonsouza » Seg Fev 11, 2013 16:16

Tenho 20 moedas. Algumas delas são de 20 centavos e outras de 10 centavos. Se as moedas de 10 centavos que eu tenho fossem as de 20, e as de 20 fossem as de 10, eu teria 60 centavos a mais do que eu tenho agora. Quantas moedas de 10 e quantas moedas de 20 eu tenho?

SOLUÇÃO POR SISTEMAS DE EQUAÇÕES

x + y = 20 => x = 20 - y

10x + 20y = 20x + 10y - 60

10(20 - y) + 20y = 20(20 - y) + 10y - 60

200 - 10y + 20y = 400 - 20y + 10y -60

10y + 10y = 400 - 200 - 60

y = 140 / 20 => y = 7

x = 20 - 7 => x = 13


Há alguma solução sem uso de sistemas??
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Moedas

Mensagempor young_jedi » Seg Fev 11, 2013 20:47

se voce tem vinte moedas e x são de 10, então 20-x são de vinte, equancionando

x.10+(20-x).20+60=x.20+(20-x).10

460-10x=10x+200

460-200=10x+10x

20x=260

x=\frac{260}{20}

x=13
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Moedas

Mensagempor andersonsouza » Seg Fev 11, 2013 23:46

E neste, amigo. Tem como fazer algo parecido com os problemas da bala?

Tentarei rascunhar algo aqui, mas aguardo, mais uma vez, sua ajuda =)
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Moedas

Mensagempor young_jedi » Ter Fev 12, 2013 11:15

então, esse eu achei mais complicado um pouco

pensamos o seguinte se ao transformar cada moeda de 10 em 20 e cada de 20 em moedas de 10 se a quantidade de moedas for igauis nos continuamos com o mesmo montante, mais se o numero de moedas de 10 for maior, para cada uma dessas moedas a mais nos ganhamos mais 10 centavos na tranformação, então a quantidade de moedas de 10 em excesso vezes 10 centavos da o nosso ganho total então

\frac{60}{10}=6

portanto nos temos que existem 6 moedas de 10 a mais doque de 20, se nos temos um total de 20 moedas
então 20-6=14

portanto 14 é o dobro da quantia de moedas de 20, então

\frac{14}{2}=7

portanto 7 é a quantidade de moedas de 20 e a quantidade de moedas de 10 é
7+6=13

pareceu meio confuso, mais foi a melhor maneira que eu encontrei
se voce encontrar uma melhor, por favor, compartilhe.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.