por klueger » Ter Fev 05, 2013 15:42
Olá. Tenho uma integral que não cheguei a solução:

'
Dica dela: usar "x.x²" no começo, primeiro fazer Substituição e depois por Partes.
-
klueger
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Fev 03, 2013 15:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por e8group » Ter Fev 05, 2013 20:34
Façamos então a dica , temos :

.
Sendo

.Substituindo ,obtemos :

Tente concluir.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por Substituição e por Partes
por Jhenrique » Sáb Set 15, 2012 14:59
- 23 Respostas
- 31216 Exibições
- Última mensagem por Jhenrique

Qua Set 26, 2012 21:26
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] SUBSTITUIÇÃO E POR PARTES
por FERNANDA_03 » Sex Mar 29, 2013 14:00
- 1 Respostas
- 1809 Exibições
- Última mensagem por young_jedi

Sex Mar 29, 2013 16:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição ou por partes.
por Sobreira » Sáb Jul 20, 2013 15:03
- 1 Respostas
- 2705 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 20:42
Cálculo: Limites, Derivadas e Integrais
-
- [Integral por partes e substituição]
por vergilxdante » Seg Mar 31, 2014 15:28
- 0 Respostas
- 1830 Exibições
- Última mensagem por vergilxdante

Seg Mar 31, 2014 15:28
Cálculo: Limites, Derivadas e Integrais
-
- Integral por partes ou substituição
por Flavio Casaes » Dom Fev 08, 2015 00:20
- 8 Respostas
- 6705 Exibições
- Última mensagem por nakagumahissao

Seg Fev 09, 2015 12:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.