• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números reais] Demonstração

[Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 19:39

Mostre, utilizando propriedades básicas, que:

[/tex]

Eu tenho a resposta deste exercício, mas gostaria que me ajudassem a melhor compreendê-la:

Resposta: Por hipótese ax = a e como [tex]a\neq0\, existe\, {a}^{-1}
Logo[tex]\, {a}^{-1}(ax) = x\, por um lado[/tex]
e por outro
\,{a}^{-1}(ax)={a}^{-1}(a)\, = 1\, por outro.
\,Logo\, x=1

\,Não saberia reproduzir a resolução se me deparasse com este exercício
no futuro... Eu sei que é usada a propriedade de dado um número
\,a\neq0\,,este número possui inverso[tex] \,{a}^{-1} \,tal\, que \,a . {a}^{-1} = 1\,[/tex]

Mas este começo[tex]\, {a}^{-1} (ax)= x\,[/tex] me parece confuso...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:02

Não conseguir visualizar a resposta .

Propriedade : Existência de inverso

Para todo real b \neq 0 ,existe um único real c tal que b\cdot c = 1 .Tal c denomina-se oposto de b , c= b^{-1} .

Portanto ,

a\cdot x = a  , a\neq 0 \iff  (a\cdot x )\cdot a^{-1} = a \cdot a^{-1} \iff  x (a \cdot a^{-1} ) = 1 \iff x \cdot 1 = 1 ou seja x = 1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:18

Você não compreendeu a^{-1} \cdot (ax) = x ?

Veja que : x = 1 \cdot x (Existência de elemento neutro )

Mas , 1 = a\cdot a^{-1}  , a \neq 0 (Existência de inverso )

Disso concluímos que x = (a\cdot a^{-1} ) x    = a^{-1} (a\cdot x) = x (Associativa )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 21:14

Não entendi ainda como isso me ajuda a provar que Se ax = a, x = 1...

Não entendi ainda menos aquela por outro lado...

Na minha cabeça vejo assim:

Assumindo x=1, pela propriedade do inverso

a . a^-1 = 1, então x = a . a^-1

Logo ax = a é o mesmo que:
a (a.a^-1) = a


Não entendo como a conclusão com a associativa vai ajudar a resolver o exercício..., mas também não acho que o que eu esteja pensando
vá me ajudar a resolvê-lo...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Seg Fev 04, 2013 20:50

Boa noite . Não pode assumir que x = 1 ,pois é extamente isto que deve demonstrar .

Antes de mostrarmos ,vamos ver alguns exemplos .

Qual o valor que x deve assumir ?

2x = 2 ???

5x = 5 ???

a'x = a'  \neq 0 ???

Parece razoável dizer que x é igual a 1 em todos os casos acima ,não é verdade ? Mas, como mostrar ?

Vamos tentar desenvolver 2x = 2 .

Temos :

x = x \cdot 1  = x\cdot \left(\frac{2}{2} \right) =  (x\cdot 2 )\frac{1}{2}  = 2x \cdot 2^{-1} .

Ora ,mas 2x = 2 então 2x \cdot 2^{-1} =  2 \cdot 2^{-1} = 2 \cdot \frac{1}{2} = 1 .

OBS.:Usamos todas as propriedades citadas no tópico acima .


Agora tente demonstrar que ax = a  , a \neq 0 \iff x = 1 .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: