por ViniRFB » Qui Jan 31, 2013 02:01
Quantos números inteiros n satisfazem a sentença
Alguém pode resolver essa questão passo a passo, pois achei o resultado, mas creio que fiz algo errado.
Grato.
Reposta 10
1 <

menor igual a 3
N sei o usar o latex code para símbolo menor igual ou maior igual
-
ViniRFB
- Usuário Parceiro

-
- Mensagens: 76
- Registrado em: Dom Fev 19, 2012 22:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por young_jedi » Qui Jan 31, 2013 15:27
o equação é esta

primeiro voce resolve a primeira equação



e agora a segunda equaçaõ



como n deve ser inteiro então n pode ser qualquer numero inteiro entre
-3 e -13
mais ele tambem por ser -13, porem não pode ser -3
logo nos temos
-4 -5 -6 -7 -8 -9 -10 -11 -12 -13
10 numeros
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por DanielFerreira » Qui Jan 31, 2013 22:58
Outra forma de resolver:

ou,
ViniRFB,
quanto ao LaTeX, Pode recorrer ao
Editor de Fórmulas que fica na barra acima.
Espero também ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por ViniRFB » Sex Fev 01, 2013 10:32
Obrigado aos dois colaboradores.
Ainda resta uma dúvida na resposta de Young as desigualdades não betem com Danjr, por quê?
-
ViniRFB
- Usuário Parceiro

-
- Mensagens: 76
- Registrado em: Dom Fev 19, 2012 22:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por young_jedi » Sex Fev 01, 2013 12:04
na ultima passagem do
danjr5
multiplicando por -1

o
danjr5 de inverteu o -3 e o -13 deve ter sido erro de digitação
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por ViniRFB » Sex Fev 01, 2013 19:46
Pois é...
Fiz novamente e notei isso.
Grato amigos e bom final de semana a todos.
-
ViniRFB
- Usuário Parceiro

-
- Mensagens: 76
- Registrado em: Dom Fev 19, 2012 22:16
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Sex Fev 01, 2013 21:03
young_jedi escreveu:o danjr5 de inverteu o -3 e o -13 deve ter sido erro de digitação
Não foi não
Young_jedi, errei mesmo [risos]! Agradeço a correção.
ViniRFB,
desculpe-me pelo equívoco.
Até logo.
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequações
por Bruno 888 » Qua Set 24, 2008 20:36
- 1 Respostas
- 4016 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:09
Inequações
-
- Inequações
por Rose » Seg Nov 24, 2008 22:44
- 2 Respostas
- 3517 Exibições
- Última mensagem por Rose

Qua Nov 26, 2008 08:18
Inequações
-
- Inequações
por cristina » Seg Set 07, 2009 01:46
- 2 Respostas
- 2723 Exibições
- Última mensagem por cristina

Seg Set 07, 2009 20:55
Sistemas de Equações
-
- inequações
por jose henrique » Ter Out 26, 2010 23:56
- 10 Respostas
- 6363 Exibições
- Última mensagem por MarceloFantini

Qui Nov 04, 2010 10:31
Sistemas de Equações
-
- Inequações
por brijahh » Sáb Ago 06, 2011 10:38
- 1 Respostas
- 2040 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 06, 2011 17:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.