por menino de ouro » Qui Jan 31, 2013 14:04
porque essas duas integrais diverge?
a)

b)
![\int_{2}^{\infty}\frac{1}{\sqrt[]{x}lnx}dx= diverge \int_{2}^{\infty}\frac{1}{\sqrt[]{x}lnx}dx= diverge](/latexrender/pictures/208e99fafe668a52b00195c1534ecac9.png)
-
menino de ouro
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Out 23, 2012 22:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
por e8group » Qui Jan 31, 2013 16:42
Tomando

,temos que :

, ou seja não converge .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integrais Impróprias
por menino de ouro » Qui Dez 20, 2012 13:32
- 2 Respostas
- 1919 Exibições
- Última mensagem por e8group

Sáb Dez 22, 2012 14:53
Cálculo: Limites, Derivadas e Integrais
-
- Integrais Impróprias
por menino de ouro » Seg Jan 28, 2013 20:03
- 2 Respostas
- 1535 Exibições
- Última mensagem por menino de ouro

Qua Jan 30, 2013 01:03
Cálculo: Limites, Derivadas e Integrais
-
- Integrais impróprias
por cardoed001 » Dom Jun 08, 2014 17:49
- 2 Respostas
- 2027 Exibições
- Última mensagem por cardoed001

Dom Jun 08, 2014 22:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integrais Impróprias
por dehcalegari » Qua Out 02, 2013 18:43
- 3 Respostas
- 1809 Exibições
- Última mensagem por dehcalegari

Seg Out 21, 2013 16:36
Cálculo: Limites, Derivadas e Integrais
-
- [integrais] Calculando áreas - Integrais
por Faby » Seg Set 19, 2011 10:55
- 11 Respostas
- 8830 Exibições
- Última mensagem por LuizAquino

Qua Set 21, 2011 18:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.