• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequência] Como resolvo esse Limite

[Sequência] Como resolvo esse Limite

Mensagempor locatelli » Sex Jan 25, 2013 12:10

Eu sei resolver essa integral contudo no final não consigo concluir a resolução, alguém pode me ajudar?

Imagem
locatelli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jan 25, 2013 11:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: [Sequência] Como resolvo esse Limite

Mensagempor young_jedi » Sáb Jan 26, 2013 11:56

primeiro vamos resolver a integral

por udv

u=e^{-sx}

du=-s.e^{-sx}

dv=cos(x)dx

v=sen(x)

\int e^{sx}cos(x)dx=e^{sx}.sen(x)-\int(-s.e^{-sx}).sen(x)dx

\int e^{sx}cos(x)dx=e^{sx}.sen(x)+s.\int e^{-sx}.sen(x)dx

por udv novamente

u=e^{-sx}

du=-s.e^{-sx}

dv=sen(x)dx

v=-cos(x)

\int e^{sx}cos(x)dx=e^{sx}.sen(x)+s.\left(e^{-sx}.(-cos(x))-\int (-s.e^{-sx}).(-cos(x))dx\right)

\int e^{sx}cos(x)dx=e^{sx}.sen(x)-s.e^{-sx}.cos(x)-s^2\int e^{-sx}.cos(x))dx

\in e^{sx}cos(x)dx+s^2\int e^{-sx}.cos(x))dx=e^{-sx}.sen(x)-s.e^{-sx}.cos(x)

(1+s^2)\int e^{sx}cos(x)dx=e^{-sx}.sen(x)-s.e^{-sx}.cos(x)

\int e^{sx}cos(x)dx=\frac{e^{-sx}.sen(x)-s.e^{-sx}.cos(x)}{1+s^2}

\int_{0}^{n} e^{sx}cos(x)dx=\frac{e^{-s.n}sen(n)-s.e^{-s.n}.cos(n)-e^{-s.0}sen(0)+s.e^{-s.0}.cos(0)}{1+s^2}

\int_{0}^{n} e^{sx}cos(x)dx=\frac{e^{-s.n}sen(n)-s.e^{-s.n}.cos(n)+s}{1+s^2}

aogra aplicando os limite, como s>0 e n tende para o infinito então a exponencial tende para zero

\lim_{n\rightarrow\infty}\frac{e^{-s.n}sen(n)-s.e^{-s.n}.cos(n)+s}{1+s^2}=\frac{s}{1+s^2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59