• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[POLINÔMIOS] Questão UNEB 2013

[POLINÔMIOS] Questão UNEB 2013

Mensagempor brunadultra » Qua Jan 23, 2013 13:58

Questão 14 (UNEB-2013) Ao desmontar um cubo de Rubik (cubo mágico), uma criança percebeu que ele era formado por
vinte e sete cubinhos menores e que dentre esses existiam oito cubinhos com três faces pintadas,
doze com apenas duas faces pintadas, seis com apenas uma das faces pintadas e apenas um
cubinho não possuía nenhuma das faces pintadas.
A tabela a seguir, mostra o número de cubinhos, de cada tipo, que podem ser obtidos ao dividir
a aresta de um cubo de madeira pintado, em partes iguais.
(tabela da questão segue em anexo)

Nessas condições, pode-se afirmar que, em R, a soma dos inversos das raízes do polinômio
P(x) = P3(x) ? P1(x) + P2(x) é igual a:

Resposta: 3/5
Anexos
MAT.jpg
TABELA
brunadultra
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Nov 07, 2012 23:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [POLINÔMIOS] Questão UNEB 2013

Mensagempor young_jedi » Qua Jan 23, 2013 15:06

da tabela e da analise do cubo no tiramos que

P1(x)=12(x-2)

P2(x)=6(x-2)^2

P3(x)=(x-2)^3

onde x é o numero de divisões das arestas do cubo

portanto

P(x)=(x-2)^3-12(x-2)+6(x-2)^2

P(x)=[(x-2)^2-12+6(x-2)](x-2)

encontre as raizes do polinomio e conclua, qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [POLINÔMIOS] Questão UNEB 2013

Mensagempor brunadultra » Qua Jan 23, 2013 21:18

Muito obrigada! =)
brunadultra
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Nov 07, 2012 23:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [POLINÔMIOS] Questão UNEB 2013

Mensagempor maiarabahia » Sáb Set 07, 2013 12:50

Olá Boa tarde, também estava com dificuldade nesta questão, mas não entendi essa parte da resolução em que
P1(x) = 12(x-2), P2... e P3... porque o x em evidencia??? Não consegui fazer essa análise.
maiarabahia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 06, 2013 12:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [POLINÔMIOS] Questão UNEB 2013

Mensagempor young_jedi » Sáb Set 07, 2013 19:04

x é o numero de divisões das arestas então tirando as duas divisões que são dos blocos dos vértices cada aresta fica com x-2
blocos como são 12 arestas então teremos um total de 12(x-2) blocos nas arestas
já nas faces termos que em cada uma a quantidade de blocos vai ser de (x-2)² como são 6 faces então temos 6(x-2)² cubos
e no interior do cubo teremos que são (x-2)³ cubos
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}