• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Indefinida

Integral Indefinida

Mensagempor Claudin » Sáb Jan 19, 2013 12:46

A questão seguinte resolvi de um jeito, e gostaria de saber qual seria o certo.
\int_{}^{}tgx.sec^2x dx

Substituindo u=tgx temos que du=sec^2xdx

E assim obtive, \int_{}^{}u

Portanto ficaria \int_{}^{}tgx = ln|secx|+c ou \int_{}^{}\frac{u^2}{2} = \frac{tg^2x}{2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral Indefinida

Mensagempor e8group » Sáb Jan 19, 2013 17:52

Por favor observe este tópico viewtopic.php?f=120&t=10905 .Faça a mesma substituição a qual eu sugerir (mas nada impeça que adote outra substituição ) .

Observe que tan(x) sec^2(x) = \frac{sin(x)}{cos^3(x)} .

Mas se adotar u  = tan(x) \implies   du = sec^2(x) dx .

Então , \int tan(x) sec^2(x) dx  = \int u du  =  \frac{u^{1+1}}{1+1} + c .

revise seus caculos.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.