• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral impropria

Integral impropria

Mensagempor menino de ouro » Dom Jan 13, 2013 17:04

pessoal,como analisar a convergência dessa integral? com um pouca de urgência ,obrigado!

\int_{-\infty}^{0}x.e^-^{x^2}^dx
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral impropria

Mensagempor young_jedi » Dom Jan 13, 2013 21:29

fazendo a integral por substituição

u=x^2

du=2xdx

\int \frac{e^{-u}}{2}du

=-\frac{e^{-u}}{2}

=-\frac{e^{-0}}{2}-\lim_{x\rightarrow-\infty}-\frac{e^{-x^2}}{2}

-\frac{1}{2}-0=-\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral impropria

Mensagempor menino de ouro » Dom Jan 13, 2013 21:40

mesmo como a resposta deu um numero real negativo eu posso dizer que ela converge ?

como também nao deu como resposta -\infty ou +\infty caso desse uma dessas respostas eu diria que ela diverge , más nao é o caso aqui
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral impropria

Mensagempor thejotta » Seg Jan 14, 2013 00:11

A função so seria divergente se o resultado fosse infinito ou não existisse... como deu um numero a função é convergente
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)