• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes UFBA 2ª Fase

Matrizes UFBA 2ª Fase

Mensagempor danilooliver » Dom Jan 13, 2013 20:53

Olá tentei fazer essa questão da segunda fase da UFBA do ano de 2012, mas não consegui :/

Imagem

Alguém poderia me ajudar? Grato desde já.
danilooliver
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jan 13, 2013 20:42
Formação Escolar: SUPLETIVO
Área/Curso: Engenharia Agronomica
Andamento: cursando

Re: Matrizes UFBA 2ª Fase

Mensagempor Russman » Dom Jan 13, 2013 21:17

Aplique a propriedade do produto:

det(AB) = det(A) . det(B)

Eu encontrei x \leq  2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Matrizes UFBA 2ª Fase

Mensagempor danilooliver » Dom Jan 13, 2013 21:30

Russman escreveu:Aplique a propriedade do produto:

det(AB) = det(A) . det(B)

Eu encontrei x \leq  2.


Eu ainda continuo sem entender, poderia detalhar mais de como você chegou a esta resposta? Como fez para achar o Det?

Obrigado.
danilooliver
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jan 13, 2013 20:42
Formação Escolar: SUPLETIVO
Área/Curso: Engenharia Agronomica
Andamento: cursando

Re: Matrizes UFBA 2ª Fase

Mensagempor Russman » Dom Jan 13, 2013 21:39

Você precisa calcular o determinante das matriz A e da matriz B. São matrizes 3x3 e eu calculei cada determinante pela Regra de Sarrus. Você tentou calcular o determinante de cada matriz?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.