por Rafael16 » Dom Jan 13, 2013 14:25
Olá!
Racionalize
![\frac{3}{\sqrt[3]{{6}^{7}}} \frac{3}{\sqrt[3]{{6}^{7}}}](/latexrender/pictures/86a03ca79cccbd47d95e2ca478aef18f.png)
![\frac{\sqrt[3]{{6}^{2}}}{72} \frac{\sqrt[3]{{6}^{2}}}{72}](/latexrender/pictures/6e5fc5eb0bb7d0040e7f49f0dec4d4ca.png)
Não consigo achar o meu erro aí...
Resposta:
![\frac{\sqrt[3]{{6}^{-4}}}{2} \frac{\sqrt[3]{{6}^{-4}}}{2}](/latexrender/pictures/41465c22ad7b9cb021177a32d11e6a84.png)
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por timoteo » Dom Jan 13, 2013 18:29
ola rafael, sua racionalizaçao esta correta.
pois, se vc realizar a duas contas vc encontrará a mesma resposta:
sem arredondamentos...
0,0456....
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
por e8group » Dom Jan 13, 2013 18:33
Não estar errado ,são duas resposta equivalentes .Veja :
![\frac{\sqrt[3]{6^2}}{72} =\frac{\sqrt[3]{6^2}}{72} \cdot \frac{\sqrt[3]{6}}{\sqrt[3]{6}} = \frac{1}{12 \cdot \sqrt[3]{6}} = \frac{1}{2\cdot6 \cdot \sqrt[3]{6}} = \frac{1}{2\cdot \sqrt[3]{6^3} \cdot \sqrt[3]{6}} = \frac{1}{2 \cdot \sqrt[3]{6^4}} = \frac{\sqrt[3]{6^{-4}}}{2} \frac{\sqrt[3]{6^2}}{72} =\frac{\sqrt[3]{6^2}}{72} \cdot \frac{\sqrt[3]{6}}{\sqrt[3]{6}} = \frac{1}{12 \cdot \sqrt[3]{6}} = \frac{1}{2\cdot6 \cdot \sqrt[3]{6}} = \frac{1}{2\cdot \sqrt[3]{6^3} \cdot \sqrt[3]{6}} = \frac{1}{2 \cdot \sqrt[3]{6^4}} = \frac{\sqrt[3]{6^{-4}}}{2}](/latexrender/pictures/7786c7ba1dbe5aa2b37b367b06a7fab5.png)
.
Como exercício ,deixo para você tentar chegar na resposta final usando outros procedimentos (que será mais rápido ) .
Dicas :
i)
ii)
Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Rafael16 » Dom Jan 13, 2013 18:41
Obrigado timoteo! Obrigado também santhiago, vou fazer!

-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Racionalização
por nathyn » Sex Fev 10, 2012 15:21
- 2 Respostas
- 1466 Exibições
- Última mensagem por nathyn

Seg Fev 13, 2012 12:28
Álgebra Elementar
-
- Racionalização
por aleson94 » Sex Mai 16, 2014 21:57
- 1 Respostas
- 1342 Exibições
- Última mensagem por Russman

Sex Mai 16, 2014 22:54
Álgebra Elementar
-
- Racionalizaçao
por Gustavo00 » Ter Mai 27, 2014 14:09
- 0 Respostas
- 1100 Exibições
- Última mensagem por Gustavo00

Ter Mai 27, 2014 14:09
Aritmética
-
- Racionalização
por Cristina Lins » Qua Abr 05, 2017 16:52
- 0 Respostas
- 1213 Exibições
- Última mensagem por Cristina Lins

Qua Abr 05, 2017 16:52
Aritmética
-
- Racionalização
por luceliasa » Sáb Jul 29, 2017 18:36
- 1 Respostas
- 1954 Exibições
- Última mensagem por DanielFerreira

Sáb Ago 12, 2017 19:07
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.