• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cônicas e quádricas

Cônicas e quádricas

Mensagempor Danilo » Ter Jan 08, 2013 13:25

Reduzir a equação de forma a identificar a quádrica que ela representa e faça um esboço do seu gráfico.

4{x}^{2} - 2{y}^{2}+{z}^{2} = 1

Bom, eu sei que cada quádrica (elipsoide, hiperboloide etc) tem a sua equação correspondente. Mas eu não consigo simplificar de forma a chegar em uma das equações... na verdade como são várias equações eu não sei de que ponto partir. E para piorar, eu não sei como fazer um gráfico porque o gráfico é desenhado no{R}^{3}. Grato a quem puder dar uma luz.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Cônicas e quádricas

Mensagempor LuizAquino » Ter Fev 19, 2013 16:05

Danilo escreveu:Reduzir a equação de forma a identificar a quádrica que ela representa e faça um esboço do seu gráfico.

4{x}^{2} - 2{y}^{2}+{z}^{2} = 1


Danilo escreveu:Bom, eu sei que cada quádrica (elipsoide, hiperboloide etc) tem a sua equação correspondente. Mas eu não consigo simplificar de forma a chegar em uma das equações... na verdade como são várias equações eu não sei de que ponto partir.


Vamos reescrever a equação da seguinte forma:

\dfrac{x^2}{\dfrac{1}{4}} - \dfrac{y^2}{\dfrac{1}{2}}+\dfrac{z^2}{1} = 1

Desse modo, podemos perceber que ela tem o formato do tipo:

\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2}+\dfrac{z^2}{c^2} = 1

Como você já deve ter estudado, uma equação deste tipo representa um hiperboloide de uma folha (detalhe: segundo as novas regras do acordo ortográfico da língua portuguesa, a palavra correta é "hiperboloide" e não mais "hiperbolóide" como era antes).

Danilo escreveu: E para piorar, eu não sei como fazer um gráfico porque o gráfico é desenhado no {R}^{3}.


Você pode seguir um roteiro básico:
1) determine a interseção com o plano xy (ou seja, z = 0);
2) determine a interseção com o plano xz (ou seja, y = 0);
3) determine a interseção com o plano yz (ou seja, x = 0).

Vejamos a aplicação desse roteiro.

Passo 1)

Considerando o plano xy (ou seja, z = 0), a equação da superfície é simplificada para:

\dfrac{x^2}{\dfrac{1}{4}} - \dfrac{y^2}{\dfrac{1}{2}} = 1

Agora pense um pouco: o que esta equação representa no plano? Ora, ela representa uma hipérbole com vértices sobre o eixo x. A figura abaixo ilustra esta hipérbole no sistema xyz.

intersecao_xy.png
intersecao_xy.png (4.27 KiB) Exibido 5071 vezes


Passo 2)

Considerando o plano xz (ou seja, y = 0), a equação da superfície é simplificada para:

\dfrac{x^2}{\dfrac{1}{4}} + \dfrac{z^2}{1} = 1

Agora pense um pouco: o que esta equação representa no plano? Ora, ela representa uma elipse com eixo maior sobre o eixo z. A figura abaixo ilustra esta elipse no sistema xyz.

intersecao_xz.png
intersecao_xz.png (4.25 KiB) Exibido 5071 vezes


Passo 3)

Considerando o plano yz (ou seja, x = 0), a equação da superfície é simplificada para:

-\dfrac{y^2}{\dfrac{1}{2}} + \dfrac{z^2}{1} = 1

Agora pense um pouco: o que esta equação representa no plano? Ora, ela representa uma hipérbole com vértices sobre o eixo z. A figura abaixo ilustra esta hipérbole no sistema xyz.

intersecao_yz.png
intersecao_yz.png (5.59 KiB) Exibido 5071 vezes


Usando agora tudo que discutimos até aqui, temos que a figura abaixo ilustra o hiperboloide de uma folha.

superficie.png
superficie.png (11.77 KiB) Exibido 5071 vezes


Observação

Se estiver interessado em assistir uma videoaula sobre o Hiperboloide de Uma Folha, eu gostaria de sugerir "43. Geometria Analítica - Equação do Hiperboloide". Esta videoaula está disponível em meu canal no YouTube, no endereço:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Cônicas e quádricas

Mensagempor Danilo » Qui Abr 04, 2013 00:43

Muito obrigado Professor!!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)