• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor JulioLester » Sáb Set 26, 2009 21:03

Bom estou tendo geometria analitica e estou com alguns problemas para resolver alguns exercicios básico vou passar eles aqui e gostaria de ajuda.

1 determine as coordenadas do vetor
v = 3u - 2w - 3t
sendo
u= i + k
w= j + k
t= -i - j +2k


2- Dados os pontos A(1,2,0) B(-1,0,2) e C(0,1,3) determine as coordenadas de D sabendo que:
v(AB) = V(CD)


3- Dados os pontos B(1,2,0) C(3,1,1) e D(0,2,-1) determine as coordenadas do ponto A sabendo que:
2v(AB) = 3v(CD)

desde ja agradeço
JulioLester
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 26, 2009 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Vetores

Mensagempor marciommuniz » Dom Set 27, 2009 01:09

JulioLester escreveu:Bom estou tendo geometria analitica e estou com alguns problemas para resolver alguns exercicios básico vou passar eles aqui e gostaria de ajuda.

1 determine as coordenadas do vetor
v = 3u - 2w - 3t
sendo
u= i + k
w= j + k
t= -i - j +2k


sabe-se que os vetores i, j e k são chamados de vetores da base canonica
de valores:
i = (1, 0 , 0)
j = (0, 1, 0)
k = (0, 0, 1)

logo: u = i+k = (1, 0 ,0) + (0, 0 ,1) = (1, 0 ,1)
w = j+k = (0, 1, 0 ) + (0, 0 , 1) = (0,1,1)
t = -i - j = (-1, 0 ,0) - (0, 1, 0) = (-1,-1,0)

se v = 3u - 2w - 3t
v = 3(1,0,1) - 2(0,1,1) - 3(-1,-1,0) = (6, 1, 1)

JulioLester escreveu:2- Dados os pontos A(1,2,0) B(-1,0,2) e C(0,1,3) determine as coordenadas de D sabendo que:
v(AB) = V(CD)


Determine letras para o vetor D = (x,y,z)..

O vetor AB = B-A = (-1,0,2) - (1,2,0) = (-2,-2,2)
O vetor CD = D-C = (x, y ,z) - (0,1,3) = (x,y-1,z-3)

Igualdade de vetores, basta igualar os termos correspondentes
x = -2
y-1 = -2 => y = -1
z-3 = 2 => z=5
logo, vetor D = (-2,-1,5)


JulioLester escreveu:3- Dados os pontos B(1,2,0) C(3,1,1) e D(0,2,-1) determine as coordenadas do ponto A sabendo que:
2v(AB) = 3v(CD)

desde ja agradeço


Utilize a mesma teoria do exercício anterior. Um abraço!
obs: fiz os calculos correndo, dê uma conferida.
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Vetores

Mensagempor JulioLester » Dom Set 27, 2009 01:25

Muito obrigado pela ajuda... já adiantou meu trabalho eu tava travado não sabia o que fazer

obrigado
JulioLester
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 26, 2009 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}